基因组

DNA图谱 / 问答 / 标签

为什么终止人类基因组计划?

因为有违反人类伦理。人类基因组,又称人类基因体,是指人的基因组,由23对染色体组成,其中包括22对常染色体,1对性染色体。组成:人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶(T)、腺嘌呤(A)、胞嘧啶(C)和鸟嘌呤(G)四种碱基排列成碱基序列,其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。其中一部分的碱基对组成了大约20000到25000个基因。

名词解释基因组计划????

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2015年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生命科学的“登月计划”。人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经基本完成(93%)。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。

参与人类基因组计划的六个国家分别是?

4月15日参与国际人类基因组计划的中国、美国、日本、英国、法国、德国六个国家分别以不同方式,宣布人类基因组序列图完成,这意味着人类对自身的了解迈入了一个新的阶段。

什么是基因组,请阐述人类基因组研究的历程,目的和意义

基因组,Genome,一个细胞或者生物体所携带的一套完整的单倍体序列,包括全套基因和间隔序列。 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约2.5万个基因的密码全部解开,同时绘制出人类基因的图谱。换句话说,就是要揭开组成人体2.5万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生命科学的“登月计划”。

人类基因组计划启动于1990年,参加这项工作的国家有美国、英国、法国、德国、______和______

人类基因组计划是由美国科学家于1985年率先提出,于1990年正式启动的.美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划.故答案为:日本;中国.

人类基因组计划搞完了没有,怎么再也没有消息啊?

人类基因组计划启动于1990年,原计划用15年时间即到2005年完成全部30亿碱基对序列测定,但由于它在科学上的巨大意义和商业上的巨大价值,使得这一计划完成时间一再提前。1998年对原计划进行了修改,宣布提前两年即2003年完成序列测定。今年5月9日,国际人类基因组宣布完成第一阶段——人类基因组序列“工作框架图”的构建。5月10日,在美国冷泉港举行的国际基因组高峰会议上,6国16个基因组负责人研究决定,将“人类基因组DNA序列图”完成时间再提前两年,即2001年6月全部完成。 这内中一定有什么原因。什么是人类基因组计划 人类基因组计划国际组织中国联系人、中科院遗传所人类基因组中心主任杨焕明教授介绍说,基因,是决定一个生物物种的所有生命现象的最基本的因子。决定一个物种之所以是这个物种,是由它的遗传信息决定的,而遗传信息的载体,就是DNA(脱氧核糖核酸)。DNA就是基因的实体。 杨焕明说,人类的遗传物质是DNA,它的总和就是人类基因组,人体估计有6—10万个基因,由大约30亿碱基对组成,分布在细胞核的23对染色体中。人类基因组计划是用大撒网的方法,将人的所有基因一网打尽,即测定人类基因组的全部DNA序列,从而解读所有遗传密码,揭示生命的所有奥秘。这项计划一旦完成,我们将清楚地了解一个人为什么会成为色盲,为什么会发胖、秃顶,易患这种疾病而不是另外的疾病等等。正由于此,它是一项改变世界、影响到我们每一个人的科学计划。 诺贝尔奖获得者杜伯克于1986年在《科学(Science)》杂志上发表的一篇短文中率先提出了这个计划。1988年,该计划正式获得2790万美元的美国国会拨款,并于1990年10月1日正式启动。其总体规划是:拟在15年内至少投资30亿美元,进行对人类基因组的分析。不久,该计划发展成一个由多国政府支持的国际项目,先后有美、英、日、德、法及中国等6个国家参加,有16个实验室及1100名生物科学家、计算机专家和技术人员参与。 人类基因组计划一直是美国乃至世界新闻媒体的报道热点。美国《时代》周刊,每年都把该计划的进展作为一年一度的重大新闻加以传播,同时政府散发小册子加以普及。特别是该计划不断取得一些阶段性成果。比如分离出某种致病基因,使得该病能够被预测、诊断,最终被攻克,由此在公众中产生巨大影响。经过多年努力,该计划在美、英等国几乎家喻户晓。我国媒体近一两年对该计划报道逐渐增多、升温,但公众对此了解还远不够深入透彻,许多人仍不清楚何为基因,更谈不上对人类基因组计划整体了解,作为这项宏伟计划的6个参与国之一,我们有必要而且必须了解上述人类基因组计划的基本内容。我国加盟人类基因组计划 我国人口占世界人口总数的22%,是一个多民族的群体,我们丰富的人群遗传资源是研究人类基因组多样性、人类进化以及人类疾病相关基因的宝贵材料。国家高技术发展计划(863计划)自1987年开始就注意资助研究基因组的有关技术,我国的人类基因组计划正式启动于1994年,重大项目《中华民族基因组若干位点基因结构的研究》由国家自然科学基金委员会、863计划和国家重点基础研究计划(973)所共同资助。1998年8月,中国科学院遗传研究所人类基因组中心在京成立;随后,国家人类基因组南方和北方研究中心相继成立。1999年7月,我国在国际人类基因组HGSI注册。同年9月,我国科学家应邀出席在英国剑桥召开的第五次人类基因组大规模测序战略研讨会,商定我们的“包干区域”。中科院遗传所人类基因组中心与国家人类基因组南方和北方中心共同承担了国际人类基因组大规模测序任务的1%,即3号染色体短臂从D3S3610至端粒的30Mb区域上3000万个碱基对的测序任务。1999年11月,科技部、中科院和国家高技术计划生物领域专家为此在北京联合召开了专家论证会,由吴院士任论证会专家组组长。根据专家评审意见,该项目立项申请得到批准。今年4月份我国完成了1%人类基因组测序“工作框架图”(覆盖率90%)构建。自此我国人类基因组测序与世界同步进入了第二阶段:完全解析人类基因组30亿碱基的顺序,制作出一张“完成序列图”,把人类基因组整体序列的准确率提高到99.99%。 据国家人类基因组南方研究中心主任、中科院院士陈竺介绍,在过去6年中,我国科学界共同努力组织了一批高水平的医学中心和遗传学领域内的国家和部门重点实验室,建立了全国性的遗传资源收集、保存网络,引进和建立了包括遗传和物理作图、大规模DNA测序、基因定位、克隆、突变检测和生物信息学等在内的较完整的基因组研究体系,同时也获得了一批重要研究成果。特别是承担并完成国际1%人类基因组测序任务,这一事件向世界表明,作为参与该任务的唯一的发展中国家,我国人类基因组大规模测序工作已经开始,并具有相当的实力。 杨焕明教授说:“不要小看这1%,它代表着中国科学家在未来的基因工程产业中占有一席之地。在这个划时代的里程碑上,已经刻上了中国人的名字。通过参与这一计划,我们可以分享数据、资源、技术与发言权,最终来开发我国自己的基因资源。” 据了解,我国已成为参与DNA序列图构建的全球16个基因组中心里的十强之一。人类基因组计划风雨兼程 尽管人类基因组计划是以为人类造福为宗旨,一开始就提倡“国际参与、免费分享”,是“公益计划”,但人类基因组计划已经产生的和将要产生的巨大经济价值,不能不让唯利是图的私营企业眼红。该计划一再提前,与私营企业争夺基因专利、基因资源密切相关。 为基因申请专利,就意味着垄断了将来以这些基因所开发出来的相关产品的权利。一条有重要功能的基因,价值在数百万至数千万美元之间,有的甚至上亿。如“肥胖基因”的转让费达1.4亿美元。 基因垄断遭到了世界上有识之士的反对。我国专家杨焕明等指出,假如基因序列本身也被允许专利,后果是信息垄断,所有基因的发现都只会归利于几家捷足先登的大公司所有。杨焕明进而提醒说:“人类只有一个基因组,不存在白种人基因组、黄种人基因组之分,全人类所有成员在根本上是一致的,对任何一个人基因组的研究,代表了全人类的一致性信息。人类基因数目是有限的,发现一个少一个,基因被‘专利",等于说,谁发现了某个基因,这个基因就归谁。这是在抢啊,就像当年哥伦布登陆抢滩一样!” 谈到人类基因组计划一再提前,就不能不提起一家名为塞莱拉的美国私营公司。1998年5月,帕金·埃尔默这个全球最大的DNA自动测序仪厂家,投资3亿美元组建塞莱拉公司,声称在3年内完成人类基因组的序列测定,目的是抢在人类基因组计划前完成,垄断人类基因组信息。1999年5月,他们又将这一目标提前一年。今年4月6日,塞莱拉公司突然宣布完成了基因测序工作。4天后,美国国家人类基因组研究所所长弗朗西斯·柯林斯发表声明说,塞莱拉的测序结果值得怀疑,他们本该对基因测序数据核查10次,却只核对3次。 姑且不论塞莱拉的测序结果是否可信,只说这家私营公司与人类基因组计划竞争态势昭然若揭。它逼迫人类基因组国际组织于今年5月10日再次将测序完成时间提前两年。我国科学家陈竺院士最近对此评价说:“塞莱拉公司科学家在基因组研究方面的胆识,却助长了该公司与公共领域相悖的势头。出于商业目的,包括塞莱拉等在内的一些私营机构力图获得基因组数据的专利,或在相当长的时间内封锁有关数据。这种做法违背了大多数公众的利益,也妨碍了科学的进步,因此遭到科学界的反对。今年3月14日,美国总统克林顿和英国首相布莱尔联合声明支持基因组数据公开的政策,使垄断基因组数据的企图明显受挫。然而,‘公"‘私"之争并未结束。”陈竺建议,既然我国已加入国际公共领域的人类基因组计划,我国政府也应该在基因组数据公开这一重大原则问题上表态。 正是在这种基因专利、基因垄断、基因资源的论战和争夺中,在基因测序成本大幅下降中,在有关各国政府的巨资投入和大力支持中,在全世界科学家的大合作和大竞赛情势下,人类基因组计划如离弦之箭,飞速奔往目标……基因组计划将影响到诸多方面 中科院遗传所人类基因组中心副主任于军教授长期在美国最具实力的基因组中心工作。他认为,人类基因组计划使基因组学再生,也使其走出了“象牙塔”,成为生命科学乃至生物技术及相关产业的先遣学科。 陈竺说,人类基因组计划为推动医学进步带来了空前的机遇。一般而言,某一致病基因被发现后,数月内即可用于诊断。疾病的基因诊断有可能发展成医学的重要分支和实现产业化。在婴儿时期的基因筛查有可能识别出疾病基因或风险基因的携带者,这一被称为“预测医学”的做法,固然为疾病的早期预防提供了便利,但同时也带来一系列伦理、法律和社会学问题。诸如:病人的隐私权如何得到保护?他们的就业和保险是否会受到影响?是否会在社会上受到“遗传歧视”,等等。 随着人类基因组向“完成序列图”的目标进行,以揭示基因组功能及调控机制为目标的功能基因组学以及医学(疾病)基因组学也已提上了议事日程。科学家预测,在未来10—20年里,人类将解读所有模式生物、模式基因组和代表生物的遗传密码。截至2000年4月15日,国际人类基因组计划已对29种微生物、面包酵母、大肠杆菌和线虫进行了100%测序,对果蝇的测序接近100%,对小鼠的全基因组测序工作也全面展开。人类基因组计划还对几十种病原微生物的基因组进行了序列测定,如与胃病发生密切相关的幽门螺杆菌,引起肺病的结核杆菌和引起梅毒的螺旋体等等基因组测序都已完成,为阐明这些疾病发生的分子机理,设计诊断、治疗和预防的新方法提供了可能性,拥有良好的商业机会。 人类基因组计划进行中需要数学、物理、化学等学科配合,从而带动了相关学科的发展。在新技术开发上,需要发展高产率、自动化的DNA测序新技术和数据分析新技术,基因组数据库和分析软件,基因芯片技术等等,所有这些都提供了很大的开发机会。在农业方面,人类基因组所积累的知识和技术可用于对农作物进行遗传修饰,使之具有某些特殊的性能,如抗逆、抗病、抗旱、抗盐碱、抗寒、抗虫害、抗杀虫剂等等,并且高产高质。在这个领域创造的经济效益将是难以估量的。

什么是人类基因组计划?其结果显示人类有多少个基因?这些基因是否只能表达同数量蛋白质,为什么?

人类基因组计划很长,看后面。目前已经发现和定位了26000多个功能基因,其中尚有42%的基因尚不知道功能,在已知基因中酶占10.28%,核酸酶占7.5%,信号传导占12.2%,转录因子占6.0%,信号分子占1.2%,受体分子占5.3%,选择性调节分子占3.2%,等。发现并了解这些功能基因的作用对于基因功能和新药的筛选都具有重要的意义。至于蛋白数量,肯定不同,因为一条基因顶多对应一条mRNA,至于mRNA翻译前剪切和连接就会形成很多,然后翻译成肽链,经过折叠,修饰和不同亚基组合后,种类就更多了。有的蛋白肽链相同,活性金属不同也会成为不同的蛋白。所以,蛋白数是远远大于基因数的。人类基因组计划简介 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体10万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。 1986年,诺贝尔奖获得者Renato Dulbecco发表短文《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA的详细知识而得到巨大推动。” 什么是基因组(Genome)?基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。 人类基因组计划的目的 为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。 测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。 在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。 HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。[编辑本段]HGP的诞生和启动 对人类基因组的研究在70年代已具有一定的雏形,在80年代在许多国家已形成一定规模。 1984年在Utah州的Alta,White R and Mendelsonhn M受美国能源部(DOE)的委托主持召开了一个小型专业会议讨论测定人类整个基因组的DNA序列的意义和前景(Cook Deegan RM,1989) 1985年5月在加州Santa Cruz由美国DOE的Sinsheimer RL主持的会议上提出了测定人类基因组全序列的动议,形成了美国能源部的“人类基因组计划”草案。 1986年3月,在新墨西哥州的Santa Fe讨论了这一计划的可行性,随后DOE宣布实施这一计划。 1986年遗传学家McKusick V提出从整个基因组的层次研究遗传的科学称为“基因组学” 1987年初,美国能源部和国立卫生研究院为HGP下拨了启动经费约550万美元(全年1.66亿美元) 1988年,美国成立了“国家人类基因组研究中心”由Watson J出任第一任主任 1990年10月1日,经美国国会批准美国HGP正式启动,总体计划在15年内投入至少30亿美元进行人类全基因组的分析。 1987年,意大利共和国国家研究委员会开始HGP研究,其特点是技术多样(YAC,杂种细胞,cDNA等)、区域集中(基本上限于Xq24-qter区域) 1989年2月英国开始HGP,特点是:帝国癌症研究基金会与国家医学研究委员会(ICRP-MRC)共同负责全国协调与资金调控,剑桥附近的Sanger中心注重首先在线虫基因组上积累经验,改进大规模DNA测序技术;同时建立了YAC库的筛选与克隆、特异细胞系、DNA探针、基因组DNA、cDNA文库、比较生物基因组DNA序列、信息分析等的“英国人类基因组资源中心”。可谓“资源集中、全国协调”。 1990年6月法兰西共和国的HGP启动。科学研究部委托国家医学科学院制定HGP,主要特点是注重整体基因组、cDNA和自动化。建立了人类多态性研究中心(CEPH),在全基因组YAC重叠群、微卫星标记(遗传图)的构建以及驰名世界的用作基因组研究的经典材料CEPH家系(80个3代多个体家系)方面产生了巨大影响。 1995年德意志联邦共和国开始HGP,来势迅猛,先后成立了资源中心和基因扫描定位中心,并开始对21号染色体的大规模测序工作。 1990年6月欧共体通过了“欧洲人类基因组研究计划”,主要资助23个实验室重点用于“资源中心”的建立和运转。还有丹麦王国、俄罗斯联邦、日本、大韩民国、澳大利亚等。 1994年,我国HGP在吴旻、强伯勤、陈竺、杨焕明的倡导下启动,最初由国家自然科学基金会和863高科技计划的支持下,先后启动了“中华民族基因组中若干位点基因结构的研究”和“重大疾病相关基因的定位、克隆、结构和功能研究”,1998年在国家科技部的领导和牵线下,1998年在上海成立了南方基因中心,1999年在北京成立了北方人类基因组中心,1998年,组建了中科院遗传所。1999年7月在国际人类基因组注册,得到完成人类3号染色体短臂上一个约30Mb区域的测序任务,该区域约占人类整个基因组的1%。 人类基因组计划(Human genome project)由美国于1987年启动,我国于1999年9月积极参加到这项研究计划中的,承担其中1%的任务,即人类3号染色体上约3000万个碱基对的测序任务。我国因此成为参加这项研究计划的唯一的发展中国家。2000年6月26日人类基因组工作草图完成。由于人类基因测序和基因专利可能会带来巨大的商业价值,各国政府和一些企业都在积极地投入该项研究,如1997年AMGE公司转让了一个与中枢神经疾病有关的基因而获利3.92亿美元。[编辑本段]HGP的研究内容 HGP的主要任务是人类的DNA测序,包括下图所示的四张谱图,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。 1、遗传图谱(genetic map) 又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。 第1代标记:经典的遗传标记,例如ABO血型位点标记,HLA位点标记。70年中后期,限制性片段长度多态性(RFLP),位点数目大与105,用限制性内切酶特异性切割DNA链,由于DNA的一个“点”上的变异所造成的能切与不能切两种状况,可产生不同长度的片段(等位片段),可用凝胶电泳显示多态性,从片段多态性的信息与疾病表型间的关系进行连锁分析,找到致病基因。如Huntington症。但每次酶切2-3个片段,信息量有限。 第2代标记:1985年,小卫星中心(minisatellite core)、可变串联重复VNTR(variable number of tandem repeats)可提供不同长度的片段,其重复单位长度为6至12个核苷酸 ,1989年微卫星标记(microsatellite marker)系统被发现和建立,重复单位长度为2~6个核苷酸,又称简短串联重复(STR)。 第3代标记:1996年MIT的Lander ES又提出了SNP(single nucleotide polymorphysm)的遗传标记系统。对每一核苷酸突变率为10-9,双等位型标记,在人类基因组中可达到300万个,平均约每1250个碱基对就会有一个。3~4个相邻的标记构成的单倍型(haplotype)就可有8~16种。 2、物理图谱(physical map) 物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法——标记片段的部分酶解法,来说明图谱制作原理。 用部分酶解法测定DNA物理图谱包括二个基本步骤: (1)完全降解:选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。 (2)部分降解:以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。部分酶解产物同样进行电泳分离及自显影。比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。下面是测定某组蛋白基因DNA物理图谱的详细说明。 完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。 基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。1998 年完成了具有52,000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。用“酵母人工染色体(YAC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。 3、序列图谱 随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。 大规模测序基本策略 逐个克隆法:对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划)。 全基因组鸟枪法:在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司)。 4、基因图谱 基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。 其原理是:所有生物性状和疾病都是由结构或功能蛋白质决定的,而已知的所有蛋白质都是由mRNA编码的,这样可以把mRNA通过反转录酶合成cDNA或称作EST的部分的cDNA片段,也可根据mRNA的信息人工合成cDNA或cDNA片段,然后,再用这种稳定的cDNA或EST作为“探针”进行分子杂交,鉴别出与转录有关的基因。用PolyA互补的寡聚T或克隆载体的相关序列作为引物对mRNA双端尾侧的几百个bp进行测序得到EST(表达序列标签)。2000年6月,EMBL中EST数量已有4,229,786。 基因图谱的意义:在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。 人类基因组是一个国际合作项目:表征人类基因组,选择的模式生物的DNA测序和作图,发展基因组研究的新技术,完善人类基因组研究涉及的伦理、法律和社会问题,培训能利用HGP发展起来的这些技术和资源进行生物学研究的科学家,促进人类健康。

我国加入人类基因组计划的时间

1999年1999年在北京成立了北方人类基因组中心。1999年7月在国际人类基因组注册,得到完成人类3号染色体短臂上一个约30Mb区域的测序任务,该区域约占人类整个基因组的1%。

什么是人类基因组计划?对人类社会有什么影响

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约2.5万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体2.5万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生命科学的“登月计划”。人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。

人类基因组计划中,中国科学家承担了百分之几的测序任务?

我国承担的工作区域,位于人类3号染色体短臂上。由于这一区域约占人类基因组的1%,因此简称为“1%项目”。我国科学家对被国际同行称为“北京区域”的这一部分进行了详细分析,共测定3.84亿个碱基,相当于将所负责区域重复测定12次以上,对人类基因组的实际贡献率为1%左右。虽然只占了1%,但这份任务对我国后续的其他基因组测序有很大的帮助,比如后来的水稻基因组测序。

人类基因组计划研究的染色体数目为(  )A.46对B.23对C.24条D.23

人体内每个细胞内有23对染色体;包括22对常染色体和一对性染色体,性染色体包括:X染色体和Y染色体.含有一对X染色体的受精卵发育成女性,而具有一条X染色体和一条Y染色体者则发育成男性.即男性染色体的组成:22对常染色体+XY,女性染色体的组成:22对常染色体+XX,因此人类基因组计划要测定的人类染色体数应该是22条常染色体和两条性染色体X和Y,即24条.故选:C

人类基因组计划的目的

人类基因组计划的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老。主要内容: HGP的主要任务是人类的DNA测序,遗传图谱、物理图谱、序列图谱 、基因图谱,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。意义:1、HGP对人类疾病基因研究的贡献 人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基2、HGP对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。 因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。

什么是人类基因组计划,主要任务是什么,有何重要意义?

人类基因组计划是1990年前后开始实施的,是由美、日、德、法、英等五个国家共同参与的一项旨在破解人类染色体约30亿对碱基对遗传信息的科研计划,是20世纪投资最大的科研计划之一。1999年9月,我国积极加入这一研究计划,负责测定人类基因组全部序列的1%。因此,我国成为6个参与国中唯一的发展中国家,表明我国在基因组学研究领域已达到国际先进水平。人类基因组计划的内容分为两方面:一是生命科学范畴的科研目标,将人类全部遗传信息表达在四张图中——遗传图、物理图、序列图和基因图;二是由此计划带来的公共卫生、教育、医疗等领域所涉及的伦理学和法学等的研究。人类基因组计划实施以来,进展十分迅速,按原计划将于2005年完成全序列测定的任务提前到2003年以前。据中国科学院2001年2月12日报道,人类基因组由31.647亿个碱基对组成,共有3万至3.5万个基因。而且“人类基因组工作框架图”已经公布。2001年8月26日国际人类基因组计划中国部分“完成图”提前两年完成。同时科学家发现,实施人类基因组计划仅仅是认识人类自身的开始,面临的新的问题是如何解释人类基因组中遗传信息的功能问题,从而提出了“后基因组计划”。该计划将从分子水平阐明生命活动的本质,从序列基因转移到结构基因和功能基因。“后基因组计划”的最为直接的结果是许多遗传病的发病机制将被阐明,制药工业将针对不同的疾病生产出行之有效的药物。届时,癌症、艾滋病等将不再是不治之症。

人类基因组计划是什么?又研究什么?我国什么进度?

1、人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。2、HGP的主要任务是人类的DNA测序,包括遗传图谱,物理图谱,序列图谱和基因图谱,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。3、中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。   首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA文库和24种染色体区特异性DNA文库及其探针;构建了人X染色体YAC图谱,已完成了人X染色体Xp11.2-p21.3跨度的约35cM STS-YAC图谱的构建;建立了YAC-cDNA筛选技术。   目前的研究工作还包括: 疾病和功能相关新基因的分离、测序和克隆的技术和方法学的创新研究;中国少数民族HLA分型研究及特种基因的分析; 人胎脑cDNA文库的构建和新基因的克隆研究。

人类基因组计划是怎么实施起来的?

人类基因组计划工程重大而复杂,完成整个计划所需的经费堪称天文数字,仅按每个碱基1美元计算,美国就要投入30亿美元。因此,用纳税人30亿美元搞“人类基因组”这一庞大计划,最初在美国争论得相当激烈。“人类基因组计划”被民众接受的过程,是社会学家、伦理学家、科学家对民众的一场有关基因的科学普及过程。“人类基因组计划”所揭示出的人类最终的奥秘,势必冲击社会、法律、伦理,因此,必须让广大民众有心理准备。“人类基因组计划”的形成,曾几度彷徨,几度反复,但最后,人类还是选择了它。从历史上说,曾有好几条思路。“基因论”是“人类基因组计划”的主要思路。不仅疾病与基因有关,人的出生、成长都与基因有关,都与DNA的序列有关。在策略上,“人类基因组计划”采取的是“基因组学”,正如杜伯克说:既然大家都知道基因的重要性,那我们只有两种选择,一是“零敲碎打”,大家都去“个体作业”,去研究自己“喜欢”的、认为是重要的基因;而另一种选择,则是前所未有地从整体上来搞清人类的整个基因组,集中力量先认识人类的所有基因。“人类基因组计划”的目标,讨论来讨论去,数易其稿,最终对每一部分都有了具体目标,并要求定质、定量、定时完成。由于第一辈科学家的呼吁,我国的“人类基因组计划”于1993年开始。这一计划的第一阶段,是国家自然科学基金委员会资助的“重大项目”。这个项目,由著名遗传学家组成顾问委员会,由中青年科学家组成学术专家委员会;还有“中国人基因组多样性委员会”与“社会、法律、伦理委员会”,另有一个小小的秘书处负责国际联系、国内协调与日常事务。人类只有一个基因组。人类基因组的研究成果应该成为人类共同享有的财富。“人类基因组计划”的最重要特点便是“全球化”。1988年4月,HUGO(国际人类基因组组织)宣告成立。HUGO代表了全世界从事人类基因组研究的科学家,以协调全球范围的人类基因组研究为宗旨,被誉为“人类基因组的联合国”。我国已有40多位科学家加入这一组织。出于同样的考虑,联合国科教文组织(UNESCO)也于1988年10月成立了“UNESCO人类基因组委员会”。1995年,成立了“国际生物伦理学会”,杨焕明教授为来自中国的代表。UNESCO发表的《关于人类基因组与人类权利的宣言》,成为“人类基因组计划”的“世界宣言”。

何谓人类基因组计划?中国科学家在此计划中起了什么作用

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的.美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划.这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息.与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划.我国于1993年加入该计划,承担其中1%,即人类3号染色体短臂上约30Mb的测序任务.2000年6 月28日人类基因组工作草图完成.

什么是人类基因组计划?科学家们使用怎么样的技术策略来完成它?

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。HGP的主要任务是人类的DNA测序,包括的四张谱图[遗传图谱(genetic map),物理图谱(physical map),序列图谱 ,基因图谱],此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。大规模测序基本策略 逐个克隆法:对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划)。 全基因组鸟枪法:在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司)。

人类基因组计划简介

目录 1 拼音 2 注解 1 拼音 rén lèi jī yīn zǔ jì huá 2 注解 现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。 人类只有一个基因组,大约有5-10万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个堿基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个堿基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但非常精确。 随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状况将会提高,二十一世纪的医学基础将由此奠定。 人类基因组计划是能与曼哈顿原子弹计划和阿波罗登月计划相以比拟的美国人类基因组计划,预期耗资30亿美元,历时15年。该计划从动议到实施经历了漫长的岁月(1984~1989)其主要内容是:基因组作图和顺序、信息和材料的管理、实施和管理的战略。 (1)基因组作图 有两大类人类基因组图谱:遗传连锁图谱和物理图谱。遗传连锁图谱主要通过家谱分析和测量不同性状一起遗传(即连锁)的频率而建立的。物理图谱是通过对构成人类基因组的脱氧核糖核酸分子的化学测度而绘制的。它包括限制酶切图谱、排序的脱氧核糖核酸克隆库以及对表达基因或无特征(功能不清)的脱氧核糖核酸片段的低分辨图谱。所有图谱的目标都是把有关基因的遗传信息,按其在每条染色体上相对位置线性地系统地排列出来。了解基因的位置及其相应的遗传性状,使我们能提示人类基因组结构模式的功能意义,并将其与其它哺乳类动物加以比较,以了解生物是如何进化的。 (2)基因组测序 基因组的核苷酸顺序是分辨率最高的物理图谱,它含有构成一个个体遗传装置的整套信息。就人而言,意味着要排出30亿个核苷酸的顺序。同时,为了更好地利用人类基因组的顺序,还应对其它生物的基因组顺序进行测序,以便人类基因组进行比较研究。 (3)信息和材料管理 作图和测序计划进行中会产生大量数据。这些数据只有被有效地收集、储存和分析,并对全世界的研究人员开放,才有价值。为此,需设立两类中心:收集及分发作图和测序数据的信息中心,收集和分发像脱氧核糖核酸DNA克隆及人继胞系这类材料的中心。 (4)实施战略 由于人类基因组作图和测序工作比现已进行作图和测序的生物基因组大好几个数量级,因而由美国国家研究委员会的生物科学学部的基础科学委员会成立的人类基因组的作图与测序委员会提出了该计划的实施战略:在该计划实施初期,虽大部分资金用于技术完善,但应加强业已开始的基因组的遗传连锁和物理作图工作;大规模的测序应在技术发展到合适时再开始;等等。 (5)管理战略 为使此计划的价值得以充分体现,人类基因组测序与作图委员会认为需要良好的组织和协调。为有效实施这一计划,应由国家卫生研究院、能源部或国家科学基金会中的一个部门负责这一计划的管理。这一领导机构接受专项拨款和依据同行评议而支付基金,并负责材料中心和信息中心的运行,协调该计划的众多实验室工作和起到情报交流媒介的作用,还应负责具体行政管理事务。

你知道什么是人类基因组计划吗?

20世纪人类科学发展史上最伟大的三大工程之一——人类基因组计划1990年10月,美国斥资30亿美元,正式启动人类基因组计划。历经10年,中、美、英、日、法、德六国,16个实验室,1100名生物科学家、计算机专家和技术人员共同参与了这一被称为生命登月计划的浩大工程。2000年初夏,人类基因组计划以完成99%的人类基因组草图,并报道了99%的人类基因序列而告最终完成,这一壮举标志着人类开始进入现代高科技的后基因时代(产业时代)。中国作为参与该计划的唯一发展中国家,承担了国际人类基因组测序任务的1%,此举标志着我国已掌握了生命科学领域中最前沿的大片基因组测序技术,站在了21世纪基因研究的前沿。随着人类基因组计划的深入研究,人类遗传基因被破译,生命奥秘被解读,生、老、病、肿瘤、肥胖等现象或疾病的神秘面纱都将被一一揭开。

人类基因组计划的进展和意义

人类基因组计划(human genome project, HGP),缘起于20世纪80年代早期的两个重要认识:全面观察基因组的能力使研究者全面地、不偏见地研究问题;能过大大的加快生物医药研究进程。(摘自《人类基因组-我们的DNA》,第147页)1986年3月7日,美国生物学家那托•杜尔贝科在《科学》杂志上发表了《癌症研究的转折点——测定人类基因组序列》一文,他首次提出了人类基因组计划。杜尔贝科认为,人类有两种选择,科学家要么经过多种途径独立寻找各自感兴趣的基因,要么合力测定出由几十亿个碱基对构成人类基因组的所有精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。(摘自《人类基因组研究报告》,第179页)“人类基因组计划”是解读人类基因组上的所有基因,共需分析24条染色体的DNA分子中的碱基对,破译人类全部遗传信息,该计划预期到2005年全部弄清人类基因组30亿个碱基的全部序列,并查清其中大概10万个基因的位置。这一计划还包括对一系列模式生物体基因组的测序,最初提出有大肠杆菌、酵母、拟南芥、线虫、果蝇和小鼠等,对这些处于生物演化不同阶段生物体的研究是认识人类基因组结构和功能绝对不可缺少的过程。随着人类基因组计划的实施,又有可租而家提出一些其他模式的生物体,如河豚鱼、斑马鱼以及水稻等。(《摘自《人类基因组研究报告》,第181页》) HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。 鉴于人类基因组计划的巨大科学意义和社会意义,该计划从美国一个国家的大型科学研究计划发展成了一个多国合作的国际科学研究工程。1990年,人类基因组计划在美国正式启动。作为一个史无前例的庞大的科学研究工程,人类基因组计划在实施的过程中必须制定出一套十分完备的实施战略。该战略包括近期目标、中期目标、远期目标、整体规划、总体方案、技术路线等。(摘自《人类遗传学》,第87页~88页)人类基因组计划分为两个阶段:DNA序列图前计划和DNA序列图计划。序列图前计划包括遗传图、物理图、转录图和序列图。(摘自《人类基因研究报告》,第183页)1、遗传图(genetic map) 又称连锁图谱(linkage map),这是根据基因或遗传标记之间的交换重组值来确定它们在染色体上的相对距离、位置的图谱。其图距单位是厘摩(coml),以纪念现代遗传学奠基人摩尔根。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。(摘自《简明人类遗传学》,第180页)2、物理图(physical map)物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。(摘自《人类遗传学》,第88页)3、转录图(transcription map)这是完成人类基因组计划的另一个关键图谱。人体细胞中的DNA决定于近10万个基因,每种组织的细胞中只有10%的DNA能表达。转录是表达的第一阶段,DNA转录后成为RNA,这些携带遗传信息的RNA被称为mRNA。mRNA根据遗传密码决定蛋白质,因此获得这些遗传信息的mRNA就非常重要。所以,转录图可视为基因图的雏形。(摘自《人类基因研究报告》,第187~188页)4、序列图谱 随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。(引用网址:http://baike.baidu.com/view/22966.htm)中国1993年启动了相关研究项目,相继在上海和北京成立了国家人类基因组南、北两个中心,并承担人类基因组计划中1%的测序任务。经过多个国家的科学家的共同协作,人类终于在20世纪90年代完成了对自身基因组测序的初步工作。(摘自《人类基因研究报告》,第180~181页)下面是关于人类基因组计划大事记:1990年,人类基因组计划正式启动;2003年6月,中、美、日、德、法、英等六国科学家宣布首次绘成人类基因组“工作框架图”。2003年4月14日,中、美、日、德、法、英等六国科学家宣布人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。2004年,人类基因组完成测序;2005年,人类X染色体测序工作基本完成,并公布了该染色体基因草图。

人类基因组计划

分类: 医疗健康 问题描述: 人类基因组计划现在进行的怎么样了?自从宣布人类基因组草图绘制完成后,就很久没听到这方面的报道了 解析: ■人类基因组计划的研究现状与展望------发表日期:2004年3月30日 一、研究现状 1、人类基因组测序1990年~1998年,人类基因组序列已完成和正在测序的共计约330Mb,占人基因组的11%左右;已识别出人类疾病相关的基因200个左右。此外,细菌、古细菌、支原体和酵母等17种生物的全基因组的测序已经完成。 值得一提的是,企业与研究部门的携手,将大大地促进测序工作的完成。美国的基因组研究所(The Institute of Genome Research, TIGR)与PE(Perkin-Elmar)公司合作建立新公司,三年内投资2亿美元,预计于2002年完成全序列的测定。这一进度将比美国 *** 资助的HGP的预定目标提前三年。美国加州的一家遗传学数据公司(Incyte)宣布(1998年〕,两年内测定基因组中的蛋白质编码序列以及密码子中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST(expressed sequence tag)或其部分序列。 1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国 *** 资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。 2、疾病基因的定位克隆 人类基因组计划的直接动因是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6000多个单基因遗传病和多种大面积危害人类健康的多基因遗传病的致病基因及相关基因,代表了对人类基因中结构和功能完整性至关重要的组成部分。所以,疾病基因的克隆在HGP中占据着核心位置,也是计划实施以来成果最显著的部分。 在遗传和物理作图工作的带动下,疾病基因的定位、克隆和鉴定研究已形成了,从表位→蛋白质→基因的传统途径转向“反求遗传学”或“定位克隆法”的全新思路。随着人类基因图的构成,3000多个人类基因已被精确地定位于染色体的各个区域。今后,一旦某个疾病位点被定位,就可以从局部的基因图中遴选出相关基因进行分析。这种被称为“定位候选克隆”的策略,将大大提高发现疾病基因的效率。 3、多基因病的研究 目前,人类疾病的基因组学研究已进入到多基因疾病这一难点。由于多基因疾病不遵循孟德尔遗传规律,难以从一般的家系遗传连锁分析取得突破。这方面的研究需要在人群和遗传标记的选择、数学模型的建立、统计方法的 改进等方面进行艰苦的努力。近来也有学者提出,用比较基因表达谱的方法来识别疾病状态下基因的激活或受抑。实际上,“癌肿基因组解剖学计划(Cancer Genome Anatomy Project,CGAP”就代表了在这方面的尝试。 4、中国的人类基因组研究 国际HGP 研究的飞速发展和日趋激烈的基因抢夺战已引起了中国 *** 和科学界的高度重视。在 *** 的资助和一批高水平的生命科学家带领下,我国已建成了一批实力较强的国家级生命科学重点实验室,组建了北京、上海人类基因组研究中心。有了研究人类基因组的条件和基础,并引进和建立了一批基因组研究中的新技术。中国的HGP在多民族基因保存、基因组多样性的比较研究方面取得了令人满意的成果,同时在白血病、食管癌、肝癌、鼻咽癌等易感基因研究方面亦取得了较大进展。 首先建立了寡核苷酸引物介导的人类高分辨染色体显微切割和显微基因克隆技术;已建立的17种染色体特异性DNA文库和24种染色体区特异性DNA文库及其探针;构建了人X染色体YAC图谱,已完成了人X染色体Xp11.2-p21.3跨度的约35cM STS-YAC图谱的构建;建立了YAC-cDNA筛选技术。 目前的研究工作还包括: 疾病和功能相关新基因的分离、测序和克隆的技术和方法学的创新研究;中国少数民族HLA分型研究及特种基因的分析; 人胎脑cDNA文库的构建和新基因的克隆研究。 中国是世界上人口最多的国家,有56 个民族和极为丰富的病种资源,并且由于长期的社会封闭,在一些地区形成了极为难得的族群和遗传隔离群,一些多世代、多个体的大家系具有典型的遗传性状,这些都是克隆相关基因的宝贵材料。但是,由于我国的HGP 研究工作起步较晚、底子薄、资金投入不足,缺乏一支稳定的、高素质的青年生力军, 我国的HGP 研究工作与国外近年来的惊人发展速度相比,差距还很大,并且有进一步加大的危险。如果我们在这场基因争夺战中不能坚守住自己的阵地,那么在21 世纪的竞争中我们又将处于被动地位:我们不能自由地应用基因诊断和基因治疗的权力,我们不能自由地进行生物药物的生产和开发,我们亦不能自由地推动其他基因相关产业的发展。 二、展望 1、生命科学工业的形成 由于基因组研究与制药、生物技术、农业、食品、化学、化妆品、环境、能源和计算机等工业部门密切相关,更重要的是基因组的研究可以转化为巨大的生产力,国际上一批大型制药公司和化学工业公司大规模纷纷投巨资进军基因组研究领域,形成了一个新的产业部门,即生命科学工业。 世界上一些大的制药集团纷纷投资建立基因组研究所。Ciba-Geigy 和Ssandoz合资组建了Novartis 公司,并斥资2.5亿美元建立研究所,开展基因组研究工作。Smith Kline 公司花1.25亿美元加快测序的进度,将药物开发项目的25%建立在基因组学之上。Glaxo-Welle 在基因组研究领域投入4,700万美元,将研究人员增加了一倍。 大型化学工业公司向生命科学工业转轨。孟山都公司早在1985年就开始转向生命科学工业。至1997年,该公司向生物技术和基因组研究的投入已高达66亿美元。1998年4月,杜邦公司宣布改组成三个实业单位,由生命科学领头。1998年5月,该公司又宣布放弃能源公司Conaco,将其改造成一家生命科学公司。Dow化学公司用9亿美元购入Eli Lilly公司40%的股票,从事谷物和食品研究,后又成立了生命科学公司。Hoechst公司则出售了它的基本化学品部门,转项投资生物技术和制药。 传统的农业和食品部门也出现了向生物技术和制药合并的趋势。Genzyme Transgenics 公司培养出的基因工程羊能以较高的产量生产抗凝血酶III,一群羊的酶产量相当于投资1.15亿美元工厂的产量。据估计,转基因动物生产的药物成本是大规模细胞培养法的十分之一。一些公司还在研究生产能抗骨质疏松的谷物,以及大规模生产和加工基因工程食品。 能源、采矿和环境工业也已在分子水平上向基因组研究汇合。例如,用产甲烷菌Methanobacterium 作为一种新能源。用抗辐射的细菌Deinococcus radiodurans清除放射性物质的污染,并在转入tod基因后,在高辐射环境下清除多种有害化学物质的污染。 2、功能基因组学 人类基因组计划当前的整体发展趋势是什么?一方面,在顺利实现遗传图和物理图的制作后,结构基因组学正在向完成染色体的完整核酸序列图的目标奋进。另一方面,功能基因组学已提上议事日程。人类基因组计划已开始进入由结构基因组学向功能基因组学过渡、转化的过程。在功能基因组学研究中,可能的核心问题有:基因组的表达及其调控、基因组的多样性、模式生物体基因组研究等。 (1)基因组的表达及其调控 1)基因转录表达谱及其调控的研究 一个细胞的基因转录表达水平能够精确而特异地反映其类型、发育阶段以及反应状态,是功能基因组学的主要内容之一。为了能够全面地评价全部基因的表达,需要建立全新的工具系统,其定量敏感性水平应达到小于1个拷贝/细胞,定性敏感性应能够区分剪接方式,还须达到检测单细胞的能力。近年来发展的DNA微阵列技术,如DNA芯片,已有可能达到这一目标。 研究基因转录表达不仅是为了获得全基因组表达的数据,以作为数学聚类分析。关键问题是要解析控制整个发育过程或反应通路的基因表达网络的机制。网络概念对于生理和病理条件下的基因表达调控都是十分重要的。一方面,大多数细胞中基因的产物都是与其它基因的产物互相作用的;另一方面,在发育过程中大多数的基因产物都是在多个时间和空间表达并发挥其功能,形成基因表达的多效性。在一个意义上,每个基因的表达模式只有放到它所在的调控网络的大背景下,才会有真正的意义。进行这方面的研究,有必要建立高通量的小鼠胚胎原位杂交技术。 2)蛋白质组学研究 蛋白质组学研究是要从整体水平上研究蛋白质的水平和修饰状态。目前正在发展标准化和自动化的二维蛋白质凝胶电泳的工作体系。首先用一个自动系统来提取人类细胞的蛋白质,继而用色谱仪进行部分分离,将每区段中的蛋白质裂解,再用质谱仪分析,并在蛋白质数据库中通过特征分析来认识产生的多肽。 蛋白质组研究的另一个重要内容是建立蛋白质相互关系的目录。生物大分子之间的相互作用构成了生命活动的基础。组装基因组各成分间的详尽作图已在T7噬菌体(55个基因)获得成功。如何在模式生物(如酵母)和人类基因组的研究中建立自动方法,认识不同的生化通路,是值得探讨的问题。 3)生物信息学的应用 目前,生物信息学已大量应用于基因的发现和预测。然而,利用生物信息学去发现基因的蛋白质产物的功能更为重要。模式生物体中越来越多的蛋白质构建编码单位被识别,无疑为基因和蛋白质同源关系的搜寻和家族的分类提供了极其宝贵的信息。同时,生物信息学的算法、程序也在不断改善,使得不仅能够从一级结构,也能从估计结构上发现同源关系。但是,利用计算机模拟所获得的理论数据,还需要经过实验经过的验证和修正。 (2)基因组多样性的研究 人类是一个具有多态性的群体。不同群体和个体在生物学性状以及在对疾病的易感性与抗性上的差别,反映了进化过程中基因组与内、外部环境相互作用的结果。开展人类基因组多样性的系统研究,无论对于了解人类的起源和进化,还是对于生物医学均会产生重大的影响。 1)对人类DNA的再测序 可以预测,在完成第一个人类基因组测序后,必然会出现对各人种、群体进行再测序和精细基因分型的热潮。这些资料与人类学、语言学的资料项结合,将有可能建立一个全人类的数据库资源,从而更好地了解人类的历史和自身特征。另外,基因组多样性的研究将成为疾病基因组学的主要内容之一,而群体遗传学将日益成为生物医药研究中的主流工具。需要对各种常见多因素疾病(如高血压、糖尿病和精神分裂症等)的相关基因及癌肿相关基因在基因组水平进行大规模的再测序,以识别其变异序列。 2)对其它生物的测序 对进化过程各个阶段的生物进行系统的比较DNA测序,将揭开生命35亿年的进化史。这样的研究不仅能勾画出一张详尽的系统进化树,而且将显示进化过程中最主要的变化所发生的时间及特点,比如新基因的出现和全基因组的复制。 认识不同生物中基因序列的保守性,将能够使我们有效地认识约束基因及其产物的功能性的因素。对序列差异性的研究则有助于认识产生大自然多样性的基础。在不同生物体之间建立序列变异与基因表达的时空差异之间的相关性,将有助于揭示基因的网络结构。 (3)开展对模式生物体的研究 1)比较基因组研究 在人类基因组的研究中,模式生物体的研究占有极其重要的地位。尽管模式生物体的基因组的结构相对简单,但是它们的核心细胞过程和生化通路在很大程度上是保守的。这项研究的意义是:1〕有助于发展和检验新的相关技术,如大规模测序、大规模表达谱检验、大规模功能筛选等;2〕通过比较和鉴定,能够了解基因组的进化,从而加速对人类基因组结构和功能的了解;3〕模式生物体间的比较研究,为阐明基因表达机制提供了重要的线索。 目前对于基因组总体结构组成方面的知识,主要来源于模式生物体的基因组序列分析。通过对不同物种间基因调控序列的计算机分析,已发现了一定比例的保守性核心调控序列。根据这些序列建立的表达模式数据库对破译基因调控网络提供了必要的条件。 2)功能缺失突变的研究 识别基因功能最有效的方法,可能是观察基因表达被阻断后在细胞和整体所产生的表型变化。在这方面,基因剔除方法(knock-out)是一项特别有用的工具。目前。国际上已开展了对酵母、线虫和果蝇的大规模功能基因组学研究,其中进展最快的是酵母。欧共体为此专门建立了一个称为EUROFAN(European Functional Analysis Neork)的研究网络。美国、加拿大和日本也启动了类似的计划。 随着线虫和果蝇基因组测序的完成,将来也可能开展对这两种生物的类似性研究。一些突变株系和技术体系建立后,不仅能够成为研究单基因功能的有效手段,而且为研究基因冗余性和基因间的相互作用等深层次问题奠定了基础。小鼠作为哺乳动物中的代表性模式生物,在功能基因组学的研究中展有特殊的地位。同源重组技术可以破坏小鼠的任何一个基因,这种方法的缺点是费用高。利用点突变、缺失突变和插入突变造成的随机突变是另一中可能的途径。对于人体细胞而言,建立反义寡核苷酸和核酶瞬间阻断基因表达的体系可能更加合适。蛋白质水平的剔除术也许是说明基因功能最有力的手段。利用组合化学方法有望生产出化学剔除试剂,用于激活或失活各种蛋白质。 总之,模式生物体的基因组计划为人类基因组的研究提供了大量的信息。今后,模式生物体的研究方向是将人类基因组8~10万个编码基因的大部分转化为已知生化功能的多成分核心机制。而要获得酶一种人类进化保守性核心机制的精细途径,以及它们的紊乱导致疾病的各种途径的知识,将只能来自对人类自身的研究。 通过功能基因组学的研究,人类最终将将能够了解哪些进化机制已经确实发生,并考虑进化过程还能够有哪些新的潜能。一种新的解答发育问题的方法可能是,将蛋白质功能域和调控顺序进行重新的组合,建立新的基因网络和形态发生通路。也就是说,未来的生物科学不仅能够认识生物体是如何构成和进化的,而且更为诱人的是产生构建新的生物体的可能潜力。

什么是人类基因组计划 揭7大主要用途

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。  人类基因组计划(HGP)对人类的重要意义1、HGP对人类疾病基因研究的贡献人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。 健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。2、HGP对医学的贡献基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。3、HGP对生物技术的贡献(1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。(2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。(3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造。4、HGP对制药工业的贡献筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。个体化的药物治疗:药物基因组学。5、HGP对社会经济的重要影响生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药) 6、HGP对生物进化研究的影响生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”? 7、HGP带来的负面作用侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。

什么是伟大的人类基因组计划?

现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。人类只有一个基因组,大约有5万~10万个基因。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。对人类基因组的研究不仅仅地是一项科学研究,它很可能暗含着将是21世纪最大的商机。基因是生物制药产业的源头、生长点和制高点,源于基因的技术拓展将是21世纪制药企业开发新品的基石。尽管基因产业所需的投资数目非常大,探索工作也非常艰辛(比如分离囊性纤维病变基因花了十年时间,耗资1.5亿美元以上),但一旦拿到一个能够编码重要功能蛋白的基因后,其回报将是无比丰厚的——发现者可以获取该基因的专利,科研人员可以之进行相关研究并设计相关的防治药物,医药公司可在专利期满之前获取市场巨额利润。1985年6月,在美国加州举行了一次会议,美国能源部提出了“人类基因组计划(human genome project,简称HGP)”的初步草案。这一计划旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我,从而最终弄清每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但非常精确。1986年6月,在新墨西哥州讨论了这一计划的可行性。随后美国能源部宣布实施这一草案。1987年初,美国能源部与国家医学研究院(NIH)为“人类基因组计划”下拨了启动经费约550万美元,1987年总额近1.66亿美元。同时,美国开始筹建人类基因组计划实验室。1989年美国成立“国家人类基因组研究中心”。诺贝尔奖金获得者、DNA分子双螺旋模型提出者沃森出任第一任主任。1990年,历经5年讨论之后,美国国会批准美国的“人类基因组计划”于10月1日正式启动。美国的人类基因组计划总体规划是:拟在15年内至少投入30亿美元,进行对人类全基因组的分析。此计划在1993年作了修订,其主要内容包括:人类基因组的基因图构建与序列分析;人类基因的鉴定;基因组研究技术的建立;人类基因组研究的模式生物;信息系统的建立。此外,还有人类基因组研究的社会、法律与伦理问题,交叉学科的技术训练,技术的转让,研究计划的外延等共9方面的内容。1988年4月,在麦库西克等有远见的西方科学家倡导下,HUGO(国际人类基因组组织)宣告成立。HUGO代表了全世界从事人类基因组研究的科学家,以协调全球范围的人类基因组研究为宗旨,被誉为“人类基因组的联合国”。联合国教科文组织(UNESCO)也于1988年10月在西班牙召集会议,成立了“UNESCO人类基因组委员会”。1990年又在莫斯科召集了以发展中国家为主体的人类基因组会议,我国著名医学遗传学家吴旻院士出席了此次会议。英国的“人类基因组计划”是于1989年2月开始的,特点可归纳为“全国协调、资源集中”。“英国人类基因组资源中心”一直向全国的有关实验室免费提供技术及实验材料服务。自1993年开始,伦敦的桑格中心成为全世界最大的测序中心,单独完成三分之一的测序任务。法国的国家人类基因组计划于1990年6月宣布开始,其计划由科学研究部委托国家医学科学院制定。诺贝尔奖金获得者道赛特以自己的奖金于1983年底建立了CEPH(人类多态性研究中心),在法国民众的支持下(民间捐助至少为5000万美元),CEPH与相关机构为全世界的人类基因组研究特别是第一代物理图与遗传图的构建做出了不可磨灭的贡献。法国国家基因测序中心对人类基因组序列图的贡献为3%左右。日本的国家级人类基因组计划是在美国的推动下,于1990年开始的。日本对DNA序列图的贡献为7%。德国在1995年才开始的“人类基因组计划”,具有新的意义与特色。德国对人类基因组序列图的贡献为7%。“人类基因组计划”需要中国,中国是人类基因资源的“首富”。中国的人多,病也多,再加上中国人几代同堂,没有天灾人祸不动窝,少数族群生活在偏远的大山里,形成的家系最多最纯。一些基因资源掠夺者便把目光聚焦在中国。中国人类基因组的研究已经进入世界前列,然而并未得到国际社会的认可。“人类基因组计划”最核心内容就是DNA序列图的构建,中国参不参与序列图绘制的国际合作,已经讨论了10年。如果认同人类DNA序列图是“重中之重”,关系到21世纪我国生命科学与生物产业的基础建设,那么,不参与序列图绘制,将使中国眼巴巴地永远失去参与的机会。1994年,我国的“人类基因组计划”在吴旻、强伯勤、陈竺、杨焕明的倡导下启动,最初在国家自然科学基金会和863高科技计划的支持下,先后启动了“中华民族基因组中若干位点基因结构的研究”和“重大疾病相关基因的定位、克隆、结构和功能研究”,在国家科技部的领导和牵线下,1998年在上海成立了南方基因中心,1999年在北京成立了北方人类基因组中心。1999年7月在国际人类基因组注册,1999年9月1日,在伦敦举行的第五次人类基因组测序战略会议上,北京中心与已为人类基因组作出卓越贡献的15个中心一起讨论战略。占世界人口20%的中国,得到完成人类3号染色体短臂上一个约30Mb区域的测序任务,该区域约占人类整个基因组的1%。此外,加拿大、丹麦、以色列、瑞典、芬兰、挪威、澳大利亚、新加坡、原苏联及原东德等也都开始了不同规模、各有特色的人类基因组研究。人类只有一个基因组。人类基因组的研究成果应该成为人类共同享有的财富。人类基因组计划的最重要特点便是“全球化”。因此,1995年,联合国教科文组织成立了“国际生物伦理学会”,还发表了“关于人类基因组与人类权利的宣言”,并于1998年11月为联合国大会通过而成为“世界宣言”。2006年5月18日,英美科学家在世界上最权威的科学杂志英国《自然》网络版上发表了人类最后一个染色体——1号染色体的基因测序。在人体全部22对常染色体中,1号染色体包含基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。科学家曾不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的99.99%。解读人体基因密码的“生命之书”宣告完成,历时16年的人类基因组计划书写完了最后一个章节。对科学家来说,“人类基因组计划”给他们带来的是对人类自身认识的一次重大飞跃,是人类战胜疾病的希望。到2020年,医生们将可以用基因工程药物治疗几乎所有的疾病。根据对遗传因素在糖尿病、高血压、心脏病和精神分裂症等疾病中所起作用的认识,人们将开发出更先进的药物,从根本上治疗这些疾病。癌症治疗将产生根本性变革。由于肿瘤通常是DNA受损后,健康细胞产生缺陷并无限制分裂导致的,因此,科学家通过解读其遗传机理,将可选择最佳治疗方法。普通医疗也将大为改观。届时,医生们根据储存的患者遗传数据即可开出处方,而不必像现在这样先进行检查后,才能确定治疗方案。对一些特定药物,还可事先确定是否会对患者产生不良副作用。到2030年,以遗传学为基础的健康护理将得到普及。每个潜在患者都可根据自己的遗传检测数据,制定相应的预防性医疗计划,以防因自身遗传缺陷可能导致的疾病。利用基因方面的广泛知识,人们还将进一步加深对引起疾病的环境因素的了解,从而为改善公众健康状况开辟广阔的前景。

人类基因组计划是什么时候开始的

人类基因组计划是什么时候开始的人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约2.5万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体2.5万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生命科学的“登月计划”。人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。

简述人类基因组计划的要点和影响

人类基因组是与曼哈顿计划和阿波罗计划一起被称为20世纪最伟大的科学工程计划。它产生了第一个人类基因组完整参考序列,为以后的个人基因组时代奠定了基础。通过对人类基因组计划的研究,我们了解到“LifeisSequece”生命是由序列构成的,“Lifei订顶斥雇俪概筹谁船京sDigital”生命是数字的。它最重要的影响来自两方面:1、对人类自身的了解第一次达到全基因组的水平,从而对人类自身的健康和医学产生深远影响。2、人类作为最重要的模式生物,将为其他所有物种的深入研究提供思路。

人类基因组计划是哪一年开始启动的呀?

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的. 一九九九年九月,中国积极加入这一研究计划,负责测定人类基因组全部序列的百分之一,也就是三号染色体上的三千万个碱基对,中国因此成为参与这一研究计划的唯一发展中国家

请问人类基因组计划包括哪几个方面????????

HGP的主要任务是人类的DNA测序,包括下图所示的四张谱图,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。遗传图谱(genetic map)又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。第1代标记经典的遗传标记,例如ABO血型位点标记,HLA位点标记。70年中后期,限制性片段长度多态性(RFLP),位点数目大与105,用限制性内切酶特异性切割DNA链,由于DNA的一个“点”上的变异所造成的能切与不能切两种状况,可产生不同长度的片段(等位片段),可用凝胶电泳显示多态性,从片段多态性的信息与疾病表型间的关系进行连锁分析,找到致病基因。如Huntington症。但每次酶切2-3个片段,信息量有限。第2代标记1985年,小卫星中心(minisatellite core)、可变串联重复VNTR(variable number of tandem repeats)可提供不同长度的片段,其重复单位长度为6至12个核苷酸 ,1989年微卫星标记(microsatellite marker)系统被发现和建立,重复单位长度为2~6个核苷酸,又称简短串联重复(STR)。第3代标记1996年MIT的Lander ES又提出了SNP(single nucleotide polymorphysm)的遗传标记系统。对每一核苷酸突变率为10-9,双等位型标记,在人类基因组中可达到300万个,平均约每1250个碱基对就会有一个。3~4个相邻的标记构成的单倍型(haplotype)就可有8~16种。物理图谱(physical map)物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法──标记片段的部分酶解法,来说明图谱制作原理。用部分酶解法测定DNA物理图谱包括二个基本步骤:⑴完全降解选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。⑵部分降解以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。部分酶解产物同样进行电泳分离及自显影。比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。下面是测定某组蛋白基因DNA物理图谱的详细说明。完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。1998 年完成了具有52,000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。用“酵母人工染色体(YAC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。序列图谱随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。大规模测序基本策略 逐个克隆法对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划)。全基因组鸟枪法在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司)。 基因图谱基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。原理所有生物性状和疾病都是由结构或功能蛋白质决定的,而已知的所有蛋白质都是由mRNA编码的,这样可以把mRNA通过反转录酶合成cDNA或称作EST的部分的cDNA片段,也可根据mRNA的信息人工合成cDNA或cDNA片段,然后,再用这种稳定的cDNA或EST作为“探针”进行分子杂交,鉴别出与转录有关的基因。用PolyA互补的寡聚T或克隆载体的相关序列作为引物对mRNA双端尾侧的几百个bp进行测序得到EST(表达序列标签)。2000年6月,EMBL中EST数量已有4,229,786。

人类基因组计划给人类带来哪些贡献?

人类基因组这个研究,第一次在生命科学里面实现了整体上的遗传信息的解析,基因组功能的研究。基因组就是一个生命体的遗传信息的总和。 生命信息的储存单位,实际上就是我们说的基因,载体是脱氧核糖核酸 DNA。在多细胞的生物里,不同的细胞之间,由不同的 细胞所组成的组织之间,由不同的组织所形成的器官之间都在发生信息的流动。这个就是我们所说的:遗传学的中心法则。基因组就是一个生命体的遗传信息的总和。DNA双螺旋的发现大概是20世纪生命科学最最伟大的突破。ATCG四种不同的碱基构成了纷繁复杂的遗传学语言。 实际上绝大多数的人类疾病都是多基因控制的。人类基因组计划正式启动是1990年,就是要用15年的时间,到2005年完成人类基因组DNA全序列的测定。到今天为止我们也还没有这样的技术,说拿来一条染色体,我们就能直接测序。所以整个人类基因组计划实际上就是由复杂到简单,再由简单又回归复杂的一个过程。在人类基因组测序起步的时候,当时用的DNA序列的分析方法是凝胶电泳为主的方法,基本上还是手工运作的。但是在20世纪90年代以后,新的一个测序技术产生了就是毛细管电泳仪技术。使得测序的速度大大加快。一天就可以有100万个碱基对的的序列被测出。中国也加入这一个测序计划,我们承担了1%的任务。2000年4月份,21号染色体全序列测序草图完成了。 现在我们已经可以做到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。将来要去看病,不光要带病卡,还要带一个自己的芯片。医生用药诊断之前,用芯片看看你可能得什么病。通过对进化不同阶段的生物体基因组学的比较,就可以发现基因组结构组成的功能调节的规律。实际上人类疾病相关的基因,也恰恰是人类基因组结构和功能完整性至关重要的信息。实际上在过去几年当中,对疾病的研究早已成为人类基因组研究 一个重要计划的组成部分。1997年提出了两个计划:一个是肿瘤基因组的解剖计划,还有一个叫环境基因组计划。实际上都是和健康相关的。人类基因组计划对医学的贡献,一个是在诊断方面,另外是在基因治疗方面。对于我们这样发展中国家来说,更应该注重预防。 我们国家的基因组计划,是1994年开始启动的,从功能基因组的角度进行切入。采取结构与功能并重,多学科交叉建立关键技术,进行基因组多样性和疾病基因研究。这是我们一开始的时候一个策略。我们可以很自豪的说:现在除了Y染色体,所有的染色体上面都遍布着中国科学家发现和命名的基因。最近我们启动了一个中华民族基因组-SNP的大规模的研究。这个工作从群体遗传学转向了,我们中国人群特点的、疾病发生发展的遗传学信息的研究。所以,如果现在我们能够把中华民族生命元素变异的系统目录和数据库做出来的话,就能够获得我国生物医学界和制药工业界技术创新的知识产权来造福子孙后代来贡献于全人类。 全文 当然清华是我们国家最高等的学府之一了。所以,今天到这里来,也有点诚惶诚恐。那么主要是来求教的。现在我要给大家介绍的人类基因组这个研究,可以说是第一次,在生命科学里面,实现了某种大科学的概念。也就是说来一个整体上的遗传信息的解析,基因组功能的研究。所以我说现在生物学的特点,已经从70年代、80年代,主要是以分析为主,学科的精细化,分工的细化,这样一个趋势到了一个新的平台上面。这个平台就是大综合,其实我们中国的科学,一开始就是讲究大综合。你看我们的艺术也是这样,我们的写意画就是一种大综合。这个东西方的融合非常重要,把西方严谨的分析,和中国早在几千年前的大综合的思路结合在一起的话,我想有可能带来一些新的突破的机遇。那么这张图我想,恐怕不光是搞生命科学的,就是我们非生命科学的同学们,也都是非常熟悉的,遗传学中心法则。 我们都知道,生命活动它的本质,它是一个信息的流动。有人一直说,我们都是搞生命科学的。但是突然有一个冒出一句话:“什么是生命”?这个倒可以让人思索一番。我个人体会,生命信息它的储存单位,生命的重要特点之一,它有记忆功能。那么它的储存的单位,实际上就是我们说的基因,在绝大部分的生命体我们知道,它的载体是脱氧核糖核酸DNA。但是它的执行单位,主要来说是蛋白质。这里面它用信息的语言,不是一样的,一个是核酸的语言,一个是氨基酸的语言。所以在这个空间信息的流动,需要有一些调控的机制。这个调控大家知道,第一步就是转录。这个时候生命信息的语言,没有发生变化,都是核酸的语言。只是从DNA到了MRNA上面,这个过程我们称为转录。然后语言要发生变化,发生转换,要求来进行翻译了。所以从MRNA上面的生命语言,变成蛋白质的生命语言。当然我们知道这个蛋白质,很多的蛋白质它都具有代谢的活动。生命体和非生命体的重要差别之一就是有代谢和新陈代谢,然后蛋白质可以形成高级空间的构型。那么在这个里面,细胞的不同的部分互相之间作用,细胞核和细胞浆互相在作用。然后在多细胞的生物里,不同的细胞之间、由不同的细胞所组成的组织之间、由不同的组织所形成的器官之间都在发生信息的流动。我想这个就是我们所说的“遗传学的中心法则”。那么基因这个概念,大家都很清楚了或者说基本概念很清楚,确切的定义也许今天还不是非常清楚。 那么基因组是什么意思?基因组就是一个生命体的遗传信息的总和。那么在这里我们就不是单个基因,而是所有的基因。它所编码所有的氨基酸相互之间的这个关系,所以感官性是完全不一样的。DNA双螺旋结构的发现大概是20世纪生命科学最最伟大的突破。那么A、T、C、G四种不同的碱基,构成了纷繁复杂的遗传学语言,生命信息的最基本的符号。这个最基本的符号实在是让我们感到非常简单。大自然就用这四种简单的字符,组成了让我们叹为观止的大千世界的无数生命的多样性的现象。那么它的遗传信息,在绝大多数的生命体,我刚才说的是DNA的分子。那么它的排列组合在那里就决定了,或者说在相当大的程度上决定了生命活动在人体,也就是我们讲的:生、老、病、死等等这些活动。那么我们在讲双螺旋结构的时候,我们都知道,碱基对、DNA是生物的大分子。一般来说我们不是用一个质量单位来表示它的体量,而是用它的长度。那么一个bp,中文叫一个碱基对。但是在基因来说,一个基因常常是要成千上万个碱基对。所以我们引入了“千碱基对”这样的尺度。然后再做到基因组的时候,我们都知道基因组它是非常大的尺度,所以又发明了一些新的尺度单位,像Mb指的是百万碱基对。 这个是基因组计划之前的,我们对人类基因组的一些了解。我们知道人类基因组的长度,一个单倍体的基因组的长度大概是30亿个碱基对。一般的教科书上都说,序列当中编码序列,也就是说我们刚才说的,发生转录表达的,可以被称之为基因的序列。大概实际上是指成熟的MRNA,发生加工以后的MRNA当中的序列,大概小于5%。也就是说,非编码序列占了绝大多数。在人体细胞核里面,遗传信息它是以染色体的方式进行组织的,分布于22个常染色体和2条性染色体。我们都知道以前的生物科学的特点,基本上是师傅带徒弟、作坊式的操作。那么到了80年代中期的时候,我想一个是生命科学的这个科学思维的大大扩展,第二个是技术的这个进步。比方说当时遗传工程已经非常成熟了,当时DNA测序也相对成熟,然后PCR的技术在那里开始产生了。因此使得科学家们,生命科学家们的雄心壮志,在那里萌发了,决心要冲破原来的这种作坊式的被物理学界甚至化学界不太看得起的那种运作方式,搞一点可以称为是大科学的东西。 当然我想科学研究的条件,思维这是一个方面。但是实际上回顾一下科学史的话,很多重大的事件它还是需求在那里拉动的。我们有的科学家批评这样的做法,意思是说我们要注意把基础研究和社会重大需求结合在一起。我觉得实际上这有点失之偏颇的,就是说有各种各样类型的研究:有的是一种自由的探索,那么这个可以非常小心,一个人的脑瓜里都可以产生诺贝尔奖的构思。但是也有一些研究的确是希望能够造福人类的。但是这样的研究提出的挑战,实际上又可以孕育着不知道多少人的诺贝尔奖的思想在里面。那么人类基因组计划,就是这样一个典型。 我们看第一份,可以认为是正式的标书。我们做这个课题,一般来说首先要有标书。那么人类基因组计划的第一个标书,可以被认为是诺贝尔奖获得者Dulbecco 1986年发表在《科学》杂志的一篇短文。它的这个短文的题目是什么呢?《肿瘤研究的转折点——人类基因组研究》。事实上我们知道美国有一位雄心勃勃的年轻总统肯尼迪上台以后,当时他在科学上有两大计划:一个是实现人类登月,还有一个战胜癌症。那么人类登月随着阿波罗计划的比较顺利地实施,1969年人类实现了登月。但是攻克肿瘤的计划是一个失败的。为什么?原来科学家把问题想得太简单了,以为肿瘤就是一两个基因的问题。但实际上绝大多数的肿瘤,都是多基因的问题。它涉及的面是整个基因组的问题,是遗传信息的整体上面紊乱的这样一些问题。就是刚才讲的,我们不要以为好像一个融合基因打到小鼠里面去,就足以引起一个白血病,不是那么简单的。因为如果那样的话,你一打进去就要产生白血病,事实上我们PML罗拉白血病,在受精卵里面注射进这个融合基因以后,需要等待一年的时间才会出现白血病而且不是每一个小时都会发生白血病。所以就提示有其他的决定因素在里面。我们现在知道有时候几个基因一起传染的时候,它发生白血病的速率就会大大加快。 Dulbecco这个文章它就说,如果我们想更多地了解肿瘤,我们从现在开始必须关注细胞的基因组。从哪那个物种着手努力?如果我们想理解人类肿瘤,那就应该从人类开始。人类肿瘤研究将因对DNA的详细知识而得到巨大的推动。实际上绝大多数的人类疾病都是多基因的。人类基因组计划正式起动,现在一般的说法是1990年。那么1990年因为是美国国会通过了正式启动这样一个计划。这个计划雄心勃勃就是要用15年的时间,到2005年完成DNA的全序列的测定。这个投资量是多少呢?30亿美元。当时计算的依据是测一个碱基对大概需要一美元。整个计划在这个地方实际上是一个比较狭义的一个计划,这个计划实际上就是一个测序计划。实际上我们讲测序,读出天书只是理解人类自身的第一步,最重要的是读懂天书。但是即使是这样读出天书一个计划的话,它也要经历很多的磨难,很多的困难。也就是说,到今天为止,我们还没有这样的技术说,拿来一条染色体,我们就能够直接测序,从一头测到另外一头我们没有办法这样做。所以整个人类基因组计划,实际上可以简单地说就是由复杂到简单再由简单又回归复杂,最后大概还是回归到简单。也就是说把不能直接测序的一条染色体拿来给它进行分解,分解成比较小的可以操作的这样的单位。那么怎么分解呢?那就是作图,你可以用遗传学的方法去作图,也可以用物理学的方法来作图。我们知道遗传学作图,就是利用遗传学的标志来确定DNA标志间相对的距离。另外一个概念就是说要构成一些所谓的DNA连续的克隆系,那么这些片断,它互相之间重叠,它可以覆盖整个的染色体,从一端覆盖到另外一端。这样就把一个不能直接拿来测序的单位,就给它解析成比较小的、可以操作的这样一个单位。最后给它重新组合成忠实于原来染色体里面生命信息这个排列的,这样一个状况在这里面,识别全部的人类基因。所以人类基因组就是作图,或者狭义的人类基因组计划,就是作图的计划,遗传图、物理图、序列图,然后基因图。 在人类基因组计划进行大规模测序的策略有两种,一种就是我刚才说的那种思路,实际上叫逐个克隆。我刚才说了,你把DNA克隆的连续克隆系建起来了,覆盖整条染色体了,然后你就把一个一个的克隆,用得最多的就是叫BAC--细菌的人工染色体,大概100多个KB这样的长度。那么把这个克隆一个一个挑出来,挑出来以后再进行亚克隆。这种亚克隆就是这样的,就可以测序了,测序以后再给它组装起来、还原起来。这样一个策略,是国际上公共领域的测序计划所采取的策略。实际上它是历史的沿革,就是说从作图,遗传、物理作图演化过来的。我们都知道美国的瑟拉尔公司,也知道奎克曼特。那么它搞了一个叫全基因组鸟枪法,在一定作图信息基础上,绕过大片段连续克隆系统的构建而直接将基因组分解成小片段随机测序,然后利用超级计算机来进行组装。能够使得人类基因组,在初步完成作图以后,很快地迈入到测序,尤其是大规模测序。并且使得整个进度朝向人们的预期。这里面有两个重大因素的贡献,不得不承认这里面,工业界的贡献是非常大的。比如说在人类基因组起步的时候,当时用的这个DNA序列的分析方法,还是凝胶电泳仪为主的方法,基本上还是手工运作的。但是在20世纪90年代上半段的时间里面,新的一个测序技术出现了,毛细管电泳仪。另外把自动化的运作和包括工业界的管理这种系统,都引进来。所以使得测序的速度大大加快。你像这样一个测试仪,它的名字就叫做Megabace。什么意思?就是毛细管电泳,它差不多两小时就可以进行读出一个序列,大概能够读到几百个碱基,那么它一天可以做十班,那么它是96道,所以一天可以做960道。每一道按照他们的宣传,都可以达到一个KB的话,实际上是很难做到的,这是最理想的状态下。所以一天就可以有100万个碱基对的产出。但是曾经使学术界感觉比较困惑的另外一个问题,就是说如果我们现在处于一个知识爆炸的这样一个时代,可以说生物信息的爆炸,是最最给人印象深刻的。 我们看在基因组计划起步之前,在公共数据库里边DNA序列增长非常缓慢。然后1990年以后,就是指数增长期。而且这个东西我是统计到去年、2000年两家世界的公共领域,测序计划和瑟拉尔分别宣布完成了所谓的工作草图。这个时候是这样一个情况,现在大概是这样的情况。1999年当时面对着瑟拉尔的强行挑战,它是1998年成立的,号称三年要拿下人类基因组,国际人类基因组计划决定迎接挑战。就由国际上16个组,分担了人类基因组测序的任务,中国也加入这样一个测序计划。当然我们承担的是1%的任务,1%还是很重要的。因为对于一个发展中的国家来说,能够挤入到这种属于发达国家的俱乐部里面,应该说还是很不容易的。有些事情我们想挤也不一定挤得进去的,像空间站的计划,人家还防范你。 在这里我想介绍一下什么叫工作框架图?因为都在说工作框架图,什么叫工作框架图?其实就是一个工作草图。那么它的意思呢?就是说通过对染色体位置明确的BAC(细菌人工染色体)连续克隆系4—5倍覆盖率的测序,获得基因组90%以上的基因序列,其错误率应该低于1%。也就是说你的覆盖面要达到基因组的90%以上。第二个呢,错误率应该低于1%。100个碱基对立面允许你有一个以下的碱基对的错误。虽然这只是一张草图,但是它已经有用途,就是对基因组结构的基本认识,基因的识别和解析、疾病基因的定位克隆、单个核苷酸的多态性的发现等。 那么讲到草图就一定有一个最终完成图了,所以这张图的定义,要求测序所用的克隆能忠实地代表常染色质的基因组结构,覆盖率要达到99.9%以上,然后序列的错误率应该低于万分之一。与工作框架图的关系呢,实际上就是在工作框架图的基础上再加大测序的覆盖率,填补空隙,使得序列的精度增加,能够达到这样一个标准。也就是说,它是草图的下一步。2000年6月25号,当时的测序的情况是怎么样的呢?我们看当时在公共领域就是说各国政府支持的六各国家,美国、英国、德国、日本、法国、中国,六国政府支持的公共领域的计划,当时是覆盖了大概人类基因组的86.8%。其中包含一部分已经完成,就是我们刚才说的最终序列图这样标准的序列大概是20%多一点点,然后66%左右的序列处于所谓的工作草图这样的阶段。那么也可以说,还没有完成。因为我们说要达到90%以上,但是同时瑟拉尔他号称他的覆盖率已经超过了95%。当然他的覆盖率其实包括了所有的公共领域的这个贡献,再加上他的贡献,所以两者相加起来。我想我们应该相信大概90%以上的序列,都是被工作草图以上的这样一个序列的质量所覆盖着。我们看看公共领域测序计划当时的情况,在24条染色体上分布的情况。我们知道,实际上1999年12月份,22号染色体作为人类最小的染色体之一,它的全序列被测定,或者说是它的常染色体,指部分的全序列。我们注意到它的短臂这个地方,就是易染色体区域,实际上非常难测。因为都是大量的空序列,又没有多少基因。2000年4月份21号染色体全序列完成了,也是同样的定义,就是说常染色体的这个部分。我们看这里是用深红的颜色来表示,差不多就是最终完成的。而这种黄颜色表示的是我们刚才说的工作草图,在大部分染色体区域,是工作草图部分。实际上现在我们讲的,完成人类基因组全序列的测定,都是指的常染色体部分,所以有的人说也许人类基因组序列永远也不能被结束。 2001年2月15日,我们知道公共领域在《自然》上,都是有一种分庭抗礼的,兵对兵、将对将的感觉。2月16号就登了瑟拉尔序列,显然,经过新的一轮角逐,比2000年6月份的时候,完成序列的质量又要高得很多。所以这样的话,应该认为,两家加在一起的信息,应该说比我刚才说的一般的定义又要进一步了。所以就产生了一个在工作草图和最终完成图之间的一个中间状态,这个中间状态就叫做高质量的草图。但是就是这样一个高质量的草图,让我们已经基本上知道我人体生命信息的家当到底有多大。弄到最后我们发现我们的家当好像还是比较可怜的,比我们原来的想像,因为我们的基因数量大概只有线虫,只有900多个细胞的一个生命体的大概一倍左右,我们就比那么一个小虫多一倍。从低等生物到高等生物它的基因组的复杂度,与其说是由基因的数量来决定的,还不如说更主要的是由基因的长度来决定的。我们最近完成了一个细菌的测序,叫钩端螺旋体,可以引起传染病的。它平均一个KB就有一个基因,这么小的一个东西,500万个碱基对的一个基因组,有5000个基因。我们人30亿个碱基对,我们不过就3万个,顶多接近4万个这样一个数字。但是你看到了酵母,到了真核细胞的话,那它就是平均大概5到10个KB一个基因。然后到了果蝇的话,虽然它的基因数量好像还没有线虫的多。但是它的基因长度已经达到10个KB以上,然后到了哺乳类一个基因,大概像人类现在是100多个KB才有一个基因。所以替换、剪接这种可能性就大大增加了。另外跟时间和空间,也就是发育阶段和组织特异性表达的调控相关这些序列复杂大大增加了。虽然基因在高等生物可以达到十的五次方数量级,几万到十万个这样的比较高等的生物。但是实际上它的蛋白质的结构域,实际上如果把基因组比成一个大厦的话,组成这个大厦的预制件,这个数量实际上是比较有限的。那么另外有一些高级生物中有更为丰富的结构域组合,神经功能、组织特异发育、调控、止血和免疫系统的基因,在脊椎动物大量扩展。数以百计的人类基因源于脊椎动物进化过程中某个时间点上,细菌基因的横向转移。基因组在不同个体之间差异很大——单核苷酸多态性,单倍体的基因差异为1/1250,能够导致蛋白质变异的不到1%。 这本遗传天书,已经放在我们面前了,接下来就是要读懂它。要读懂它,一定要从大的系统的概念来考虑怎么样读懂。一个这个基因组的信息,和外界的环境,是在那里相互作用。另外这个基因组的信息不是从天上掉下来的,它是通过一个漫长的几十亿年进化的过程发展过来的,所以要用比较的方法去读它。另外要考虑到在个体之间和群体之间又是有变异的,这种变异也受到外界环境的一些调节。所以功能基因组学的研究内容,虽然现在没有一个严格的定义,但是我个人认为,至少包括这几个方面:人类基因组DNA序列变异性研究,其核心的内容是SNP,因为这是最常见的变异类型,当然还有很多其他的变异。然后基因组表达调控的研究,这个是发育阶段组织器官的变异,然后模式生物体的研究,这个里面包括进化的意思,和利用模式生物进行功能研究。当然从事所有这些研究,就像我们进行测序研究一样。生物信息学,它既是一个基本的工具,又是一个新兴的学科。因为最后要把这些信息整合起来,搞成一个我们所说的,系统生物学的话,你一定要用理论的手段,和大规模信息处理的手段。 那么基因组DNA序列变异性的研究,SNP,这种变异类型实际上是所有基因组的共同特征。它在相当大的程度上决定了不同的个体群体,这个是指的人类在疾病的易感性,对环境致病因子反应性和其他性状上面的差别。 在这里我举一个例子,说明这个性状有多么重要。我们就来看一看,我们对药物的反应性。我想我们每一个人、再健康的人,一生当中总要接触一些药物的。现在有一个新的提法叫药物遗传学,指的是大部分药物,在体内代谢的酶会有遗传多态性。像这里,一类是改变基团的一些酶,一类是对基团进行转移的一些酶。它都有很多的多态性,这种多态性的后果是什么呢?它在相当大的程度上决定了我们个体对药物的反应性。比方说这是一个很复杂的程序,但是我想我们主要的信息在这个地方。对于某一个药物来说,最适合它的基因型的,它的疗效可以达到75%,毒性只有1%。同样一个药,如果到了一个最不适合它的一个个体的情况是怎么样?它的疗效只有10%,毒性大于80%。那么基因组表达以及表达的调控的这个研究,这个我想都可以理解。那么指的是在全细胞的水平,如果是在单细胞的生命体是整个生命体的水平,识别基因组的所有转录表达的产物。实际上它是高通量的结构生物学,大批量解析蛋白质的高级结构,是连接基因组功能研究和新药开发研究的桥梁。然后为了在这样大的规模上,在整体水平上获得功能信息,需要一些所谓的并行化的分析手段。就是现在已经做得到在指甲盖大小的生物芯片上点上人类的基因组,所有的基因都点在上面。所以有人说将来要去看病不光要带病卡,还要带一个自己的芯片。医生用药诊断之前先把芯片插进去,看看你可能得什么病,说起来很好,也很吓人的。模式生物体的研究一般的说法大概从单细胞、第一个生命跟外界隔绝以后,到现在的万物之灵的人类,大概是14亿年的进化史。那么通过进化不同阶段的生物体基因组序列的比较,发现基因组结构组成和功能调节的规律。 那么基因组计划,我刚才说一个是科学兴趣使然,科学家要探索人类的自身,另外也是社会驱动使然,就是说要战胜人类的疾病。所以最后它的价值的实现,我想还是应该回归到对人类的健康的贡献上面去。那么在这个意义上说,人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。我们看到过去的十年当中,由于人类基因组研究的带动,使得人类疾病相关性的研究有了长足的进步。单基因疾病由于定位克隆和定位候选克隆的新思路,导致了一大批遗传病基因的发现。我们知道传统的对基因的认识,是从表型到基因型。也就是你知道一个蛋白质,你测定了它的氨基酸的序列,然后根据密码址的原理,你推测它的DNA的序列可能是什么。你合成一个探针到基因组当中一调,把基因调出来。比方说血红蛋白病,这是第一个人类发现的分子病,它就是先知道了猪蛋白氨基酸的序列,然后再把它的基因调出来。但是绝大多数的人类疾病,我们不知道它的生化基础是什么东西,特别是在基因组计划之前。比方说像亨氏舞蹈病,我们就知道这个人会手舞足蹈,叫亨氏舞蹈病。比方说像遗传性的结肠癌,我们知道大肠部位大容易长息肉,但是我们不知道那个蛋白质出了问题。你怎么办?怎么来找到它的疾病基因?所以有了一个新的概念,叫反过来的遗传学,是什么呢?先去找它的基因,然后再去看它的表型。一旦拿到基因以后,很容易你马上可以推测它的蛋白质的结构。你可以产生抗体,你可以接下来做很多基因的功能。健康相关的研究是HGP的重要组成部分,1997年相继提出:肿瘤基因组的解剖计划,环境基因组计划。 人类基因组计划对医学的贡献。基因诊断,基因治疗和基因组信息为基础的治疗,发展中国家和发达国家越来越重视疾病的预防,特别是基于基因组信息的疾病预防。我国一贯提倡的是预防为主。如果能够在一个人刚出生的时候进行疾病易感基因的识别,在早期把风险人群挑出来,然后在环境因子、生活方式上实施干预。生物技术发生了深刻的变化,更多地进入到细胞、胚胎和组织的研究水平上来,推动了胚胎和成年期干细胞技术的应用。血液病研究与其他先进学%

人类基因组计划是什么?

人类基因组计划简介 人类基因组计划(human genome project,HGP)是由美国科学家于1985年率先提出,于1990年正式启动的.美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划.按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图.换句话说,就是要揭开组成人体10万个基因的30亿个碱基对的秘密.人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划. 1986年,诺贝尔奖获得者Renato Dulbecco发表短文《肿瘤研究的转折点:人类基因组测序》(Science,231:1055-1056).文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组.…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始.……人类肿瘤研究将因对DNA的详细知识而得到巨大推动.” 什么是基因组(Genome)?基因组就是一个物种中所有基因的整体组成.人类基因组有两层意义:遗传信息和遗传物质.要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系. 人类基因组计划的目的 为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源. 测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息. 在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”. HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据.

人类基因组计划是什么?

一个生物体内所有基因的总和就是基因组。只有破译了所有基因的秘密,才能从根本上探索生命的本质。科学家们认为,通过测定人类的基因,了解基因的功能,可以为治疗和预防癌症、心脏病等疑难疾病提供新的途径。所以继原子弹爆炸和阿波罗登月之后,人类又一项宏伟的科学工程——人类基因组计划,由美国科学家于1985年率先提出,美、英、法、德、日和我国科学家共同参与,于1990年正式启动。这一计划耗资30亿美元,旨在为30多亿个碱基对构成的人类基因组进行精确测序,绘制一张完整的人类基因图,并解读出其中所包含的生命信息,为从基因层面上有效的控制疾病,延缓衰老提供可能。

什么是人类基因组计划

一个生物体内所有基因的总和就是基因组。只有破译了所有基因的秘密,才能从根本上探索生命的本质。科学家们认为,通过测定人类的基因,了解基因的功能,可以为治疗和预防癌症、心脏病等疑难疾病提供新的途径。所以继原子弹爆炸和阿波罗登月之后,人类又一项宏伟的科学工程——人类基因组计划,由美国科学家于1985年率先提出,美、英、法、德、日和我国科学家共同参与,于1990年正式启动。这一计划耗资30亿美元,旨在为30多亿个碱基对构成的人类基因组进行精确测序,绘制一张完整的人类基因图,并解读出其中所包含的生命信息,为从基因层面上有效的控制疾病,延缓衰老提供可能。

什么是基因组DNA?包括什么?

基因组是指包含在生物体中的DNA(部分病毒是RNA)中的全部遗传信息,又称基因体(genome),包括基因和非编码DNA。更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。 1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。原理简介详细内容《遗传学名词》第二版对“基因组”的释义:单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。基因是生命遗传的基本单位,由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。各国所承担工作比例约为美国54%,英国33%,日本7%,法国2.8%,德国2.2%,中国1%。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为2.5万个,远少于原先10万个基因的估计。人类基因组是全人类的共同财富。国内外专家普遍认为,基因组序列图首次在分子层面上为人类提供了一份生命“说明书”,不仅奠定了人类认识自我的基石,推动了生命与医学科学的革命性进展,而且为全人类的健康带来了福音。理论发展人类只有一个基因组,大约有2.5万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷,虽然很慢,但非常精确。应用实例随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类 本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状 况将会提高,二十一世纪的医学基础将由此奠定。利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级作物。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。

基因组图谱的遗传图谱和物理图谱有什么区别?

通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。胁庑颍范蕉说腸DNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.

基因组物理图谱,遗传图谱有什么区别,有何用途?

通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。 物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp) 或千碱基(kb)或兆碱基(Mb)〕的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.

基因组图谱的遗传图谱和物理图谱有什么区别?

通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。 物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp) 或千碱基(kb)或兆碱基(Mb)〕的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.

人类基因组计划中采用了人的什么细胞?多少个?不同种族人的都测了吗?

http://baike.baidu.com/view/22966.html?wtp=tt

基因复合体的HLA的基因组成

人类的MHC称为HLA复合体,,位于第6对染色体的短臂上长度为4分摩(centimorgan,cM),约为4000kb。整个复合体上有近60个基因座,已正式命名的等位基因278个。根据编码分子的特性不同,可将整个复合体的基因分成三类:Ⅰ类、Ⅱ类和Ⅲ类基因(图6-2)。基因结构1.类基因区位于着丝点的远端,主要包括HLA-A、B、C三个位点;新近又提出E、F、G、H、K和L位点。2.类基因区位于着丝点的近端,是结构最为复杂的一个区,主要由DR、DQ、DP三个亚区构成,每个亚区又有若干个位点。新近又鉴定了DO、DZ、DX三个亚区。3.类基因区含有编码补体成分C2、C4、B因子及TNF、热休克蛋白和21羟化酶的基因。4.非HLA基因这些基因位于HLA区域内,其功能与HLA相关;目前已经命名的有两类:LMP(largemultifunctionalprotease,或lowmolicularweightpolypeptides)和TAP(transporterassociatedwithantigenprocessing,或transporterofantigenpeptides)。LMP为蛋白酶体相关基因,由LMP2和LMP7组成;TAP为ABC转运蛋白基因,包括TAP1和TAP2;它们的功能可能与抗原的处理和递呈有关。

基因组遗传图谱和物理图谱的异同

  通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。  物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp) 或千碱基(kb)或兆碱基(Mb)〕的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图。

基因组物理图谱,遗传图谱有什么区别,有何用途?

分类: 教育/科学 >> 科学技术 解析: 通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。 ue004 物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序 *** 定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp) 或千碱基(kb)或兆碱基(Mb)〕的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.

人类基因组计划的任务是哪几种图谱 急!!!

1、遗传图谱(genetic map) 又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。 第1代标记 经典的遗传标记,例如ABO血型位点标记,HLA位点标记。70年中后期,限制性片段长度多态性(RFLP),位点数目大与105,用限制性内切酶特异性切割DNA链,由于DNA的一个“点”上的变异所造成的能切与不能切两种状况,可产生不同长度的片段(等位片段),可用凝胶电泳显示多态性,从片段多态性的信息与疾病表型间的关系进行连锁分析,找到致病基因。如Huntington症。但每次酶切2-3个片段,信息量有限。 第2代标记 1985年,小卫星中心(minisatellite core)、可变串联重复VNTR(variable number of tandem repeats)可提供不同长度的片段,其重复单位长度为6至12个核苷酸 ,1989年微卫星标记(microsatellite marker)系统被发现和建立,重复单位长度为2~6个核苷酸,又称简短串联重复(STR)。 第3代标记 1996年MIT的Lander ES又提出了SNP(single nucleotide polymorphysm)的遗传标记系统。对每一核苷酸突变率为10-9,双等位型标记,在人类基因组中可达到300万个,平均约每1250个碱基对就会有一个。3~4个相邻的标记构成的单倍型(haplotype)就可有8~16种。2、物理图谱(physical map) 物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法——标记片段的部分酶解法,来说明图谱制作原理。 用部分酶解法测定DNA物理图谱包括二个基本步骤: (1)完全降解 选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。 (2)部分降解 以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。部分酶解产物同样进行电泳分离及自显影。比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。下面是测定某组蛋白基因DNA物理图谱的详细说明。 完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。 基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。1998 年完成了具有52,000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。用“酵母人工染色体(YAC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。3、序列图谱 随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。 大规模测序基本策略 逐个克隆法 对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划)。 全基因组鸟枪法 在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司)。 基因图谱4、基因图谱 基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。 原理 所有生物性状和疾病都是由结构或功能蛋白质决定的,而已知的所有蛋白质都是由mRNA编码的,这样可以把mRNA通过反转录酶合成cDNA或称作EST的部分的cDNA片段,也可根据mRNA的信息人工合成cDNA或cDNA片段,然后,再用这种稳定的cDNA或EST作为“探针”进行分子杂交,鉴别出与转录有关的基因。用PolyA互补的寡聚T或克隆载体的相关序列作为引物对mRNA双端尾侧的几百个bp进行测序得到EST(表达序列标签)。2000年6月,EMBL中EST数量已有4,229,786。[4] 基因图谱的意义 在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。 人类基因组是一个国际合作项目:表征人类基因组,选择的模式生物的DNA测序和作图,发展基因组研究的新技术,完善人类基因组研究涉及的伦理、法律和社会问题,培训能利用HGP发展起来的这些技术和资源进行生物学研究的科学家,促进人类健康。

基因组物理图谱,遗传图谱有什么区别,有何用途??

通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图.它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示.绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增.早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析. 物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序 *** 定片段间连接顺序,以及遗传标志之间物理距离〔碱基对(bp) 或千碱基(kb)或兆碱基(Mb)〕的图谱.以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列).将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.,2,通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩...,2,

人类基因组计划的任务是哪几种图谱 急!!!

1、遗传图谱(genetic map) 又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。 第1代标记 经典的遗传标记,例如ABO血型位点标记,HLA位点标记。70年中后期,限制性片段长度多态性(RFLP),位点数目大与105,用限制性内切酶特异性切割DNA链,由于DNA的一个“点”上的变异所造成的能切与不能切两种状况,可产生不同长度的片段(等位片段),可用凝胶电泳显示多态性,从片段多态性的信息与疾病表型间的关系进行连锁分析,找到致病基因。如Huntington症。但每次酶切2-3个片段,信息量有限。 第2代标记 1985年,小卫星中心(minisatellite core)、可变串联重复VNTR(variable number of tandem repeats)可提供不同长度的片段,其重复单位长度为6至12个核苷酸 ,1989年微卫星标记(microsatellite marker)系统被发现和建立,重复单位长度为2~6个核苷酸,又称简短串联重复(STR)。 第3代标记 1996年MIT的Lander ES又提出了SNP(single nucleotide polymorphysm)的遗传标记系统。对每一核苷酸突变率为10-9,双等位型标记,在人类基因组中可达到300万个,平均约每1250个碱基对就会有一个。3~4个相邻的标记构成的单倍型(haplotype)就可有8~16种。2、物理图谱(physical map) 物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法——标记片段的部分酶解法,来说明图谱制作原理。 用部分酶解法测定DNA物理图谱包括二个基本步骤: (1)完全降解 选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。 (2)部分降解 以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。部分酶解产物同样进行电泳分离及自显影。比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。下面是测定某组蛋白基因DNA物理图谱的详细说明。 完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。 基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。1998 年完成了具有52,000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。用“酵母人工染色体(YAC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。3、序列图谱 随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。 大规模测序基本策略 逐个克隆法 对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划)。 全基因组鸟枪法 在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司)。 基因图谱4、基因图谱 基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。 原理 所有生物性状和疾病都是由结构或功能蛋白质决定的,而已知的所有蛋白质都是由mRNA编码的,这样可以把mRNA通过反转录酶合成cDNA或称作EST的部分的cDNA片段,也可根据mRNA的信息人工合成cDNA或cDNA片段,然后,再用这种稳定的cDNA或EST作为“探针”进行分子杂交,鉴别出与转录有关的基因。用PolyA互补的寡聚T或克隆载体的相关序列作为引物对mRNA双端尾侧的几百个bp进行测序得到EST(表达序列标签)。2000年6月,EMBL中EST数量已有4,229,786。[4] 基因图谱的意义 在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。 人类基因组是一个国际合作项目:表征人类基因组,选择的模式生物的DNA测序和作图,发展基因组研究的新技术,完善人类基因组研究涉及的伦理、法律和社会问题,培训能利用HGP发展起来的这些技术和资源进行生物学研究的科学家,促进人类健康。

在做基因组测序之前要先进行遗传作图,得到遗传标记的作用究竟是什么?能用通俗的语言说吗

你的问法有点小问题,什么叫得到遗传标记的作用?各种遗传标记就是用来作图的。是想问为什么测序之前要作图吗?如果是,因为这是一个全基因组测序策略,人类基因组计划就是先作出草图,然后再对每个叠连群中的克隆进行测序。

什么是全基因组重复序列

人类基因组:指人体dna分子所携带的全部遗传信息。由24条双链的dna分子组成(包括1~22号染色体dna与x、y染色体dna),上边有30亿个碱基对,30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。30亿个碱基对,太庞大了,无法精确的告知你序列是什么样的。但可以告诉你:人类基因组计划:1、概念:是指分析测定人类基因组的核苷酸序列。2、主要内容:绘制人类基因组的四张图,即遗传图、物理图、序列图和转录图。绘制这四张图好比是建立一个“人体地图”,沿着地图中一个个路标,如“遗传标记”、“物理标记”等,可以一步步地找到每一个基因,搞清楚每一个基因的核苷酸序列。3、进展:2000年6月26日,6国科学家向世界宣布:“人类基因组草图”的绘制工作已经全部完成。预计到2003年,“人类基因组精图”的绘制工作也将全部完成。4、意义:(1)对于各种疾病,尤其是各种遗传病的诊断、治疗具有划时代的意义;(有利于疾病的诊断和治疗。)(2)对于进一步了解基因表达的调控机制、细胞的生长、分化和个体发育的机制,以及生物的进化等也具有重要的意义;(有利于研究基因的表达和调控机制);(有利于研究生物的进化。)(3)将推动生物高新技术的发展,并产生巨大的经济效益。(有利于培育优良的动植物品种)。另外,美国奎格u2022文特研究所和多伦多儿童医院以及加州大学的研究者日前公布了奎格u2022文特本人的基因组序列,这是世界上第一次公布单个个体二倍体的基因组序列,初步分析报告发表在最新一期的《plos生物学》上。

在人类基因组中有哪些遗传标记

第一代 RFLP第二代 STR第三代 SNP

什么技术有助于测出人类基因组碱基对的全序列?

第1代标记经典的遗传标记,例如ABO血型位点标记,HLA位点标记。70年中后期,限制性片段长度多态性(RFLP),位点数目大于105,用限制性内切酶特异性切割DNA链,由于DNA的一个“点”上的变异所造成的能切与不能切两种状况,可产生不同长度的片段(等位片段),可用凝胶电泳显示多态性,从片段多态性的信息与疾病表型间的关系进行连锁分析,找到致病基因。如Huntington症。但每次酶切2-3个片段,信息量有限。第2代标记1985年,小卫星中心(minisatellite core)、可变串联重复VNTR(variable number of tandem repeats)可提供不同长度的片段,其重复单位长度为6至12个核苷酸 ,1989年微卫星标记(microsatellite marker)系统被发现和建立,重复单位长度为2~6个核苷酸,又称简短串联重复(STR)。第3代标记1996年MIT的Lander ES又提出了SNP(single nucleotide polymorphysm)的遗传标记系统。对每一核苷酸突变率为10-9,双等位型标记,在人类基因组中可达到300万个,平均约每1250个碱基对就会有一个。3~4个相邻的标记构成的单倍型(haplotype)就可有8~16种。物理图谱物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法──标记片段的部分酶解法,来说明图谱制作原理。用部分酶解法测定DNA物理图谱包括二个基本步骤:⑴完全降解选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。⑵部分降解以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。部分酶解产物同样进行电泳分离及自显影。比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。下面是测定某组蛋白基因DNA物理图谱的详细说明。完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。1998 年完成了具有52,000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。用“酵母人工染色体(YAC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。序列图谱随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。大规模测序基本策略 逐个克隆法对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划)。全基因组鸟枪法在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司)。

在人类基因组中有哪些遗传标记?用它们能为科研和应用做什么服务?

遗传标记包括形态学标记、细胞学标记、生物化学标记、免疫学标记 和分子标记五种类型。形态学标记 形态标记是指肉眼可见的或仪器测量动物的外部特征 (如毛色、体型、外形、皮肤结构等),以这种形态性状、生理性状及生态地理分布等待征为遗传标记,研究物种间的关系、分类和鉴定。形态学标记研究物种是基于个体性状描述,得到的结论往往不够完善,且数量性状很难剔除环境的影响,需生物统计学知识进行严密的分析。但是用直观的标记研究质量性状的遗传显得更简单、更方便。目前此法仍是一种有效手段并发挥着重要作用。 细胞学标记 细胞遗传标记是指对处理过的动物个体染色体数目和形态进行分析,主要包括:染色体核型和带型及缺失、重复、易位、倒位等。一个物种的核型特征即染色体数目、形态及行为的稳定是相对的,故可作为一种遗传标记来测定基因所在的染色体及在染色体上的相对位置,染色体是遗传物质的载体,是基因的携带者,染色体变异必然会导致生物体发生遗传变异,是遗传变异的重要来源。通过比较动物与其近缘祖先的染色体数目和结构,追溯动物的起源和演化,检测动物的遗传特性,为动物育种提供较好的方法。 生物化学标记 生化遗传标记是以动物体内的某些生化性状为遗传标记,主要指血型、血清蛋白及同工酶。 20世纪60年代以来,蛋白电泳技术作为检测遗传特性的一种主要方法得到了广泛的应用。蛋白电泳所检测的主要是血浆和血细胞中可溶性蛋白和同工酶中氨基酸的变化,通过对一系列蛋白和同工酶的检测,就可为动物品种内的遗传变异和品种间的亲缘关系提供有用的信息川。但是,蛋白和同工酶都是基因的表达产物,非遗传物质本身,它们的表现易受环境和发育状况的影响;这些因素决定了蛋白电泳具有一定的局限性,但是蛋白电泳技术操作简便、快速及检测费用相对较低,日前仍是遗传特性研究中应用较多的方法之一。生化遗传标记经济、方便,且多态性比形态学标记和细胞遗传标记丰富。已被广泛应用于物种起源与分类研究和动物育种中。 免疫学标记 免疫学标记是以动物的免疫学特征为遗传标记,主要指:红细胞抗原、白细胞抗原、胸腺细胞抗原等。早在1900年,Ehrlich和Morgenroth指出山羊红细胞表面存在抗原,并证明这些抗原具有个体差异;20世纪80年代初,人们转向白细胞抗原的研究,即主要组织相容性复合体(MHC), MHC的重要特性与疾病及生理性状具有重要关系。根据动物个体淋巴细胞抗原特异性,研究品种间、个体间、抗病力强弱的差异及亲子关系等。 分子标记 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是 DNA 水平遗传多态性的直接的反映。与其他几种遗传标记——形态标记、同工酶标记、细胞标记相比,DNA 分子标记具有的优越性有:大多数分子标记为共显性,对隐性的农艺性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的 DNA 都可用于标记分析;分子标记揭示来自 DNA 的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,现在 DNA 分子标记技术已有数十种,广泛应用于作物遗传育种、基因组作图、基因定位、植物亲缘关系鉴别、基因库构建、基因克隆等方面。 态学标记、细胞学标记、生化标记、免疫学标记等一直被广泛应用,然而这些标记都无法直接反映遗传物质的特征,仅是遗传物质的间接反映,且易受环境的影响,因此具有很大的局限性。DNA作为遗传物质的载体,是研究动物遗传特性的一个重要指标。20世纪80年代以来,随着分子生物学技术和分子遗传学的迅速发展,分子克隆及DNA重组技术的日趋完善,研究者对基因结构和功能研究的进一步深入,在分子水平上寻找DNA的多态性,以此为标记进行各种遗传分析。DNA分子标记直接反映DNA水平上的遗传变异,能稳定遗传,信息量大,可靠性高,消除了环境影响。DNA水平的遗传标记自产生以来得到广泛应用。通过对DNA的研究,对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预都是DNA为我们的医学事业所做出的贡献。

如何查找ars是dna复制起始位点,在酵母基因组中通常有数百个这样的序列

转录起始位点是指与新生RNA链第一个核苷酸相对应DNA链上的碱基,通常为一个嘌呤(A或G)。一般转录起始位点的上游都有雨RNA聚合酶结合的启动子区域,是不是可以根据这个来大致确定一下你的转录起始位点。

基因组文库提取目的基因,在表达载体后为什么要先导入受体细胞再分离出目的基因

一般是提取目的基因,连接到克隆载体,导入受体细胞进行扩增,提取携带目的基因的克隆载体,再将目的基因转接到表达载体,导入受体细胞进行基因表达,这么个大致过程。如果直接连接的表达载体,导入受体细胞再分离目的基因也是如通过测序为了验证目的基因序列的正确性等一些操作。

能在大肠杆菌表达吗 cDNA文库的基因,还是基因组基因,还是都可以?为什么?

是cDNA文库的基因,大肠杆菌本身是原核生物,真核生物基因组基因往往含有内含子,在真核生物中转录后会被修饰,剪切下来的,而在大肠杆菌中,不能被剪切,所以转基因的时候最好转的是cDNA文库的基因,已切除内含子.另外,不是所有外源基因都适合用大肠做表达菌的,还要具体问题具体分析哦~

构建基因组文库中 将所有基因导入受体细胞是仅仅用来储存还是使基因在受体细胞中表达

基因组文库的构建的定义:某种生物基因组的全部遗传信息通过克隆载体储存于某一受体菌的群体中,这个群体就称为该生物基因组的文库。 目的:a)分离有用的目的 基因b)保存某种生物的全部基因所以是为了储存

基因组文库中的每个基因是否能在每个细菌体内复制及表达?

细胞内的基因是选择性表达的,所以不是每个基因都会复制表达。

利用基因组文库获得人的胰岛素基因通过基因工程转移至细菌中为什么不能表达为什么?

基因组文库中获得的人的胰岛素基因含有内含子,细菌没有人细胞所具有的编辑功能(删除内含子),所以不能表达。

cDNA克隆与基因组克隆有何不同?

cdna文库以mrna为模板,经反转录酶催化,在体外反转录成cdna,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cdna,并能繁殖扩增,这样包含着细胞全部mrna信息的cdna克隆集合称为该组织细胞的cdna文库。基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cdna文库具有组织细胞特异性。cdna文库显然比基因组dna文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组dna文库获得的基因与从cdna文库获得的不同,基因组。dna文库所含的是带有内含子和外显子的基因组基因,而从cdna文库中获得的是已经过剪接、去除了内含子的cdna基因组文库用限制性内切酶切割细胞的整个基因组dna,可以得到大量的基因组dna片段,然后将这些dna片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组dna片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。将某种生物的基因组dna切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组dna片段的集合,即基因组文库,它包含了该生物的所有基因。

基因组文库与cdna文库有哪些区别

cDNA文库 以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库.基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性.cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因.但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组.DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA 基因组文库 用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆.这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库. 将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆.这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因.

在做转基因实验时,怎样从基因组文库中提取目的基因?

得,我回答你的追问哈用内切酶切割的DNA,就是第一步提取的全基因组。我多嘴几句:你的标题问的是基因文库。这涉及到构建某细胞的全基因组文库的问题,当构建文库完成后,可以根据目的基因的特性,进行提取。构建E.coli全基因组文库:对E.coli进行提取基因组DNA,然后用酶切,用适当的载体对酶切产物随机整合,然后将整合后的重组载体,转化入宿主细胞。(一般没个宿主细胞只能吸收一个重组载体,这是细胞的特性。)然后根据所需目的基因的转录翻译产物进行鉴定,筛选出阳性克隆,然后进行提取载体,再用之前的酶切,电泳分离目的基因片段。回答完毕。有问题,发邮件,留言均可。

百度提问:猪的基因组多大

猪的全基因组包含约30亿个碱基对,和人的基因组大小接近。染色体数为38条。

基因组学

基因组(Genome) 指的是细胞内全套染色体及其所携带的全部基因,包括基因序列和基因间序列。 C值(C Value) :在每一种生物中其单倍体基因组的DNA总量。 C值悖论(C Value Paradox) :生物的C值并不与生物复杂程度(或进化上所处地位)相关。 G值悖论(G Value Paradox) :基因组中全部基因的数目与物种的复杂程度同样没有明显的相关性。 病毒基因组 :大小从几kb到几百kb不等;基因组的结构形式多样;通过多种方法在较小的基因组容量内提高携带遗传信息的效率,比如基因组内非编码序列所占比例极少,含有大量的重叠基因;基因组内存在操纵子结构。 原核细胞基因组特点 :闭合的环状双链DNA分子,包括类核和质粒,但质粒是染色体外DNA,不是细菌存活所必需的;多数基因是单拷贝基因,两条DNA链都可以编码基因,非编码序列的比例很低,重叠基因比例显著减少;含有少量重复序列,也含有一些特殊的DNA结构元件;基因的组织顺序和染色体复制方向有关,存在大量操纵子结构。 线粒体基因组特点 :裸露的环形DNA分子;主要编码少量rRNA、tRNA和部分呼吸链组分蛋白质;其大小和生物的复杂程度无关;线粒体DNA是多拷贝的,在胞质分裂的过程中不同的线粒体DNA随机分配给子细胞。 叶绿体基因组特点 :闭合环状DNA,有多个拷贝,且拷贝数可变;基因组大小多数为几百kb大小;编码的基因数较多,包括tRNA基因、rRNA基因、RNA聚合酶基因、核糖体蛋白编码基因、光合作用相关蛋白组分的编码基因,且含有大量内含子序列;含有两端数十kb大小的反向重复区(IR区),将环状DNA分子分隔成大单拷贝区(LSC区)和小单拷贝区(SSC区)。 遗传冗余(Genetic Redundancy) 是真核基因组区别于原核基因组的显著特征。 23对染色体,3.2Gb序列;GC含量偏低,仅占38%,且不同染色体的不同区段上GC含量也不相同;共20687个蛋白质编码基因,平均含有9个外显子,长度27kb,但不同基因间的差异极大;基因在染色体上不均匀分布;少见重叠基因和多顺反子转录单位;除去编码基因,非编码序列占人类基因组的98.5%,远远高于其他任何一种生物。 蛋白质编码基因分类:酶10.28%,核酸酶7.5%,信号传导12.2%,转录因子6.0%,信号分子1.2%,受体分子5.3%,选择性调节分子3.2%。 基因座(Locus) :基因在染色体上所处的位置,每个特定的基因在染色体上都有其特定的座位。 基因簇(Gene Cluster) :一些基因序列和功能高度一致的基因分布在染色体的相同位置,紧密连锁,构成基因簇。 基因家族(Gene Family) :人类基因组中的一些基因,它们的全部或部分序列高度同源,能够编码保守的蛋白质结构域或者氨基酸基序,这些基因构成了一个基因家族。 基因超家族(Gene Superfamily) :一些基因之间的序列同源性低,基因产物没有保守的蛋白质功能域或者氨基酸基序,但是功能相关,且具有相同的特征结构,这类基因的进化亲缘关系较远,构成基因超家族。 假基因(Pseudogene) :又称 拟基因 ,与基因组中有功能的基因具有相似的序列,但失去蛋白质编码功能或不能正常转录表达的DNA序列。 常规假基因(Classical/Convential Pseudogene) :在基因组进化过程中功能基因复制后发生突变产生的失活产物。 加工假基因(Processed Pseudogene) :功能基因的mRNA转录产物反转录为cDNA后再次插入基因组,形成一个新的基因拷贝,又称为 反转座假基因(Retropseudogene) 。 非编码RNA(non-Coding RNA,ncRNA) :不具有蛋白质编码功能的RNA。ncRNA的编码基因有的位于蛋白质编码基因的内部(如内含子),有的位于蛋白质编码基因的相关序列(如假基因),还有的位于基因间的非编码序列。 包括:rRNA、tRNA、snRNA(内含子剪接)、snoRNA(rRNA加工)、miRNA(转录后调控)、siRNA(转录后调控)、piRNA(转座调控,精子发生)、lncRNA(转录及翻译后调控、表观遗传修饰) 约占75%,其中绝大部分为重复序列。 分类: 低度重复序列(2-10个拷贝)、中度重复序列(10-10 5个拷贝)、高度重复序列(10 6个拷贝)。 串联重复序列 :核心重复序列头尾相连串联在染色体上,包括:大卫星DNA、卫星DNA、小卫星DNA、微卫星DNA 散在重复序列 :主要是转座元件,包括:以RNA为中介的转座序列和DNA转座子化石。 以RNA为中介的转座序列包括 短散在核序列(Short Interspersed Nuclear Element,SINE) 、 长散在核序列(Long Interspersed Nuclear Element,LINE) 、 具有长末端重复序列的LTR元件(Retrovirus-like Element) ,又称 反转录病毒类似元件 。 大片段基因组倍增(Segmental Duplis,SDs) ,又称 低拷贝重复(Low-copy Repeats) ,指的是一段1-200kb的基因组大片段从基因组中某个特定位置转移到另一个或多个位置形成多个拷贝的现象。SDs的不同拷贝之间的序列相似度高,易造成染色体的同源重组。 以上内容参考中国大学MOOC网站复旦大学遗传学。

人类的基因组有多少,是不是最多的

1.不是最多的,从基因组的大小和基因的数量上看,人类基因组都不是最多的,人类基因组的一些转录后、翻译后的修饰是非常普遍,并且类型繁多,这些因素也是决定了人类的功能的; 2.人类基因组,又称人类基因体,是指人的基因组,由23对染色体组成,其中包括22对体染色体、1条X染色体和1条Y染色体; 3.人类基因组含有约31.6亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶,腺嘌呤,胞嘧啶和鸟嘌呤四种碱基排列成碱基序列; 4.其中A与T之间由两个氢键连接,鸟嘌呤与胞嘧啶之间由三个氢键连接,碱基对的排列在DNA中也只能是胸腺嘧啶对腺嘌呤,胞嘧啶对鸟嘌呤;5.全世界的生物学与医学界在人类基因组计划中,调查人类基因组中的真染色质基因序列,发现人类的基因数量比原先预期的少得多,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的约百分之一点五。

请问在网上怎么搜索某种细菌的基因组大小呢?

去NCBI(http://www.ncbi.nlm.nih.gov/)上输入你的细菌名字,然后search就出来新页面,如果你的细菌基因组已登录NCBI,那你就会在这个新页面找到它,单击打开它,就会看到它的基因组核苷酸序列。

基因组C值,是什么意思?定义

基因组大小也称为C值,是指生物体的单倍体基因组所含DNA总量。详见:http://scichi.com/new/Article/357.html

基因组文章 | 黑麦《Nature Genetics》 2021

黑麦( Secale cereale , 2n = 2x = 14, RR)属于禾本科小麦族黑麦属,虽然与普通小麦( Triticum aestivum ,Ta;2n=6x=42;AABBDD)和大麦( Hordeum vulgare ,Hv)有亲缘关系, 但黑麦具有独特的农艺性状和基因组特性。黑麦1RS染色体臂携带的抗病基因通过远缘杂交转入小麦基因组,为小麦生产中白粉病和条锈病的防治做出了巨大贡献。此外,黑麦也可以与普通小麦远缘杂交,染色体加倍后,人工合成八倍体小黑麦,具有比黑麦更高的生物量和产量。因此,黑麦是许多国家重要的粮食和饲料作物,也是全球小麦和小黑麦改良的重要遗传资源。 威宁黑麦是我国的 栽培黑麦早抽穗优良品种,具有抗白粉病和条锈病的能力 。为了解析黑麦优良性状的遗传和分子基础,促进黑麦及相关作物的基因组和育种研究,作者对威宁黑麦进行了基因组测序和分析。 基因组: 基因注释转录组测序: 正常或胁迫(冷或干旱)条件下栽培的植物中的叶、茎、根和穗样品,以及在开花10、20、30、40天后收获的发育中的样品, 采用Illumina及Pacbio平台进行RNA-seq及Iso-Seq; 遗传图谱QTL : 295份威宁黑麦×荆州黑麦杂交的F2代样品,采用SLAF-seq进行标记开发; 抽穗基因表达 : 威宁黑麦和荆州黑麦样品,播种后4、7和10天采集叶片样品,每个时间点使用3个生物重复,使用Illumina平台进行测序; 选择进化分析 : 已发表的101份家养黑麦和野生黑麦品种材料的公共数据,包括81份 S. cereala 、5份 S. vavilovii 、11份 S. strictum 和4份 S. sylvestre 。 流式预估黑麦基因组大小约为7.86 Gb,结合PacBio、Illumina、Hi-C、遗传图谱、BioNano光学图谱等技术进行基因组组装。最终组装 7.74 Gb 基因组(为预估基因组大小的98.47%),scaffold N50 为1.04 Gb,并将93.67%的序列挂载至 7条 染色体上(图1)。黑麦中每条染色体基因组大小均在 1G左右 (2R、3R、4R、6R、7R(~1Gb);1R(0.94097 Gb)、5R(0.99891 Gb) ),比乌拉尔图小麦( T. urartu ;Tu;AA型)、节节麦( Aegilops tauschii ;Aet;DD型)、野生二粒小麦( T. turgidum ssp. dicoccoides ;WEW;AABB型)、普通小麦(Ta)和大麦(Hv)等复杂的麦类中的 单条染色体基因组均要大 。超大的基因组及染色体,对黑麦基因组组装,特别是染色体挂载带来了巨大的挑战。 将组装结果与两个冬季黑麦品种(Lo7和Lo225)构建的染色体连锁图相比,威宁黑麦1R至7R物理图具有较高的一致性。在先前报道的Lo7的pyro-sequencing reads中97.45%可以定位到威宁基因组,平均序列同源性为97.71%,平均序列覆盖率为97.27%。 LAI值为 18.42 ,远高于先前发表的小麦和大麦基因组的LAI值。BUSCO评估结果为 96.74% 。并注释了 86,991 个蛋白编码基因。尽管黑麦基因组非常复杂,通过以上评估结果说明,本次研究构建了一个高质量的威宁黑麦基因组。 威宁黑麦基因组中 90.31% 被注释为转座子(TE),共包含537个家族的2,671,941个成员,这些TE的含量明显比普通小麦 (84.70%), 乌拉尔图小麦 (81.42%), 节节麦 (84.40%), 野生二粒小麦 (82.20%)以及大麦 (80.80%)更高。其中长末端重复反转录转座子( LTR-RTs )是主要的转座子,在注释的TEs中占 84.49% 。 与乌拉尔图小麦、节节麦及大麦的LTR-RTs进行比较发现 : (1) Gypsy 是威宁黑麦基因组扩张的主要原因之一(Fig. 2a),并且有3个LTR-RT家族( Daniela , Sumaya , Sumana )在威宁黑麦中特异扩张,其中 Daniela 的占比最高 (Fig. 2b)。 (2)威宁黑麦中完整的LTR-RTs插入时间存在独特的 双峰 分布(Fig. 2c),最近一个扩增峰出现在50万年前,另一个出现在1.7 百万年(MYA)左右(与大麦相同) (Fig. 2c)。 (3)这种双峰分布模式由 Gypsy RTs 的扩增主导 (Fig. 2d)。 通过比较威宁黑麦、乌拉尔图小麦、节节麦、普通小麦(亚基因组TaA、TaB和TaD)、大麦、水稻Os( Oryza sativa ssp. japonica)、二穗短柄草Bd( Brachypodium distachyon )、玉米Zm( Zea mays )、高粱Sb( Sorghum bicolor )、谷子Si( Setaria italica )基因组,共找到2517个单拷贝同源基因。 通过对单拷贝基因组构建进化树和计算分化时间发现,在大麦和小麦分化后(15MYA)黑麦和二倍体小麦发生了分化(9.6 MYA) (Fig. 3a)。 作者以水稻为祖先参考基因组,研究了威宁黑麦的染色体进化 。威宁黑麦与水稻共鉴定出23个大的共线性区,包含10949对同源基因,可推断出祖先染色体片段在1R到7R之间的排列(图3b): (1)3R来源于一条古老的染色体AGK1/Os1,该染色体的一段易位到6RL; (2)1R和2R分别由两条祖先染色体组成,1R与AGK10/Os10嵌套插入AGK5/Os5有关,2R与AGK7/Os7嵌套插入AGK4/Os4有关; (3)4R, 5R, 6R,7R是通过复杂易位从至少三条祖先染色体上获得的(图3b)。 在威宁黑麦基因组与普通小麦3个亚基因组的比较中,1R、2R和3R分别与小麦1、2和3组染色体完全共线。在4R中发现与4A/4B/4D、7A/7B/7D或6A/6B/6D部分共线性的三个区域。5R与5A完全共线,与5B、5D部分共线是由于易位的4B或4D片段在5BL或5DL的长臂融合(图3c)。在6R中,观察到3个区域与6A/6B/6D、3A/3B/3D或7A/7B/7D部分共线。这些数据将有助于黑麦在禾本科比较基因组学研究以及黑麦与普通小麦杂交研究中的应用。 作者在威宁黑麦中检测到4217个单拷贝基因、23753个 分散重复基因 (DDGs) 、6659个 近端重复基因 (PDGs) 、7077个 串联重复基因(TDGs) 和1866个 片段重复基因 。转座重复基因(TrDGs)由TE活性诱导的,它们是DDGs的主要组成部分。作者以大麦为参考,在威宁黑麦中鉴定出10357个TrDG,远远大于以相同方式计算的乌拉尔图小麦(7145)和节节麦(7351)中TrDG的数量(图4b)。威宁黑麦所特有的TrDG(5926)也比乌拉尔图小麦(3513)和节节麦(3327)所特有的TrDG更多(图4b)。 接下来作者研究了黑麦淀粉生物合成相关基因(SBRGs)中的基因复制。研究发现 这些重复类型在黑麦淀粉生物合成相关基因(SBRGs)中普遍存在,并且不同的 SBRG 的复制基因之间往往表现出表达差异,说明不同类型的基因复制可以丰富黑麦基因在重要生物过程中的遗传多样性 (图4c),这些黑麦 SBRGs 的新变化可能为调控植物淀粉生物合成和性质提供新的酶活性,因此解析全套黑麦 SBRGs 有利于提高黑麦的产量潜力和营养品质。 与小麦和大麦相似,黑麦在胚乳组织中积累了丰富的储存蛋白SSPs。作者利用威宁基因组组装技术对黑麦SSP基因座进行了分析。 在威宁黑麦中未发现小麦低分子量麦谷蛋白亚基(LMW-GSs)或大麦B-hordein的同源序列(图5b), 表明在黑麦进化过程中携带这些基因的染色体片段缺失 ,这可能是1BL1RS易位系小麦品种中,品质受影响的主要原因。 并且在威宁黑麦基因组中未发现α-醇溶蛋白基因, 这说明小麦及其近缘种的α-醇溶蛋白(α-gliadin)基因可能在小麦和黑麦分化之后进化产生的。 这些SSP分析结果阐明了黑麦碱基因座的结构和组成,这将有助于进一步研究黑麦、小黑麦和小麦的加工和营养品质。 作者利用iTAK预测了威宁黑麦和其他8种禾本科植物的TF基因 ,在注释的65个转录因子基因家族中,威宁黑麦有28个家族成员增加,其中AP2/ERF TF基因家族成员增加幅度较大。威宁黑麦的 抗病相关基因(DRA )数量(1989)比乌拉尔图小麦(1621)、节节麦(1758)、大麦(1508)、二穗短柄草(1178)、水稻(1575)以及普通小麦的A(1836)、B(1728)和D(1888)亚基因组多。 鉴于AP2/ERF TFs和DRA基因在植物对非生物逆境和生物逆境的反应中的重要作用,上述发现可能有助于黑麦和相关作物的有效遗传研究和分子改良。 在长日照条件下,威宁黑麦比荆州黑麦提前抽穗10-12天(图6a),这与威宁黑麦茎尖分生组织发育更快有关(图6b)。在威宁黑麦基因组中,注释到在长日照条件下高表达的两个开花位点(FT)基因 ScFT1 (ScWN4R01G446100)和 ScFT2 (ScWN3R01G192500)。播种后7天和10天, ScFT1 和 ScFT2 在威宁黑麦中的表达水平显著高于荆州黑麦(图6c),且ScFT蛋白在黑麦中积累到相对较高水平,而荆州黑麦中几乎没有(图6d)。检测到的ScFT蛋白的大小(~29 kDa)比预测出的ScFT1和ScFT2的分子量大(~19 kDa)(图6d),表明ScFT蛋白具有潜在的翻译后修饰。用高效检测磷蛋白的磷酸标记SDS-PAGE分析表明,威宁黑麦中ScFT确实发生了翻译后磷酸化修饰。 作者突变了ScFT2磷酸化相关的两个残基(S76和T132),并为ScFT2构建了一系列去磷模拟位点(S76A、T132A和S76A/T132A)和磷模拟位点(S76D、T132D和S76D/T132D)。当使用马铃薯X病毒载体在烟草中进行外源表达时,ScFT2和去磷双突变体ScFT2 S76A/T132A 相对于游离GFP(对照)和其他ScFT2突变体,表现出持续促进烟草生长(图6e)。与GFP相比,ScFT2和三个去磷突变体(ScFT2 S76A 、ScFT2 T132A 及ScFT2 S76A/T132A )的异位表达提高了开花植株的百分比,ScFT2 S76A/T132A 尤其明显,但在表达三个拟磷突变体(ScFT2 S76D , ScFT2 T132D , or ScFT2 S76D/T132D )中没有观察到这种促进作用(图6f)。免疫印迹分析表明,ScFT2、ScFT2 S76A 、ScFT2 T132A 和ScFT2 S76A/T132A 在烟草植株中的积累量相当高,但ScFT2 S76D 、ScFT2 T132D 和ScFT2 S76D/T132D 在烟草植株中的积累量却很低(图6g)。因此,保守的S76和T132残基的改变影响了ScFT2控制植物开花的功能,这与ScFT2蛋白稳定性的改变有关。本研究首次发现FT磷酸化对开花时间控制的影响,为更全面地探索FT蛋白控制植物开花的分子和生化机制提供了新的途径。 作者进一步研究了光周期 Photoperiod ( Ppd )基因的表达,该基因在长日照条件下正调控FT的表达。在威宁和荆州黑麦的转录组分析中发现了一个表达 Ppd 的基因 ScPpd1 (ScWN2R01G043000)。该基因在威宁黑麦内的表达非常早,在播种2 天后达到表达高峰;而荆州黑麦在播种4天后才达到高峰(图6h)。根据 ScPpd1 对黑麦抽穗期的调控作用,研究者利用威宁×荆州F2代群体,检测到与前期研究一致的三个主效抽穗期QTL( Hd2R、Hd5R 和 Hd6R )。 对驯化基因的分析可以促进对作物性状的理解和改良,但在黑麦中这类基因的分子分析方面进展甚微。作者通过全基因组选择清除分析,利用在栽培黑麦和瓦维洛夫黑麦( S. vavilovii )之间鉴定的123647个SNPs,挖掘黑麦驯化相关染色体区域和基因座。DRI、 F ST 、XP-CLR分析中,共同识别到11个选择信号(图7a-c)。通过与水稻和大麦的共线性比较,发现了一些可能的选择清除位点,包括已在水稻或大麦中已被功能分析的 ScBC1 、 ScBtr 、 ScGW2 、 ScMOC1 、 ScID1 和 ScWx 的同源基因(图7a-c)。 检测到的 ScID1 基因座包含一对具有相同编码序列的 ScID1 同源序列(ScWN6R01G057200和ScWN6R01G057300,下称 ScID1.1 和 ScID1.2 )(图7d)。ScID1.1和ScID1.2蛋白与玉米ID1(63.19%)和水稻RID1(65.34%)具有很强的同源性,这两个蛋白在玉米和水稻中都被发现调控着从营养体向花发育的转换。 ScID1.1 和 ScID1.2 在威宁黑麦幼叶中的表达水平高于荆州黑麦(图7e)。在威宁×荆州分离的F2群体中, ScID1 JZ/JZ 纯合植株的平均抽穗期显著晚于 ScID1 JZ/WN 或 ScID1 WN/WN 个体(图7f),这与荆州黑麦相对于威宁黑麦的晚花表型相一致(图6a)。以上结果表明 ScID1 可能参与了抽穗期的调控,并可能通过黑麦驯化进行选择,使作物成熟度得到适当的调整,以更好地适应生长环境。 总结 本研究对我国栽培的优良品种威宁黑麦进行了基因组测序,基因组组装大小为7.74 Gb,其中93.67%被挂载到7条染色体上,重复序列占总基因组的90.31%。并基于高质量基因组揭示了全基因组基因复制及其对淀粉生物合成基因的影响,解析了复杂储存蛋白基因座位点、早抽穗性状的基因表达特征以及黑麦中与驯化相关的染色体区域和基因座。本次研究结果对黑麦的基因组特性及其农艺性状调控基因有了新的认识,获得了对进一步研究黑麦驯化遗传基础可能有用的染色体区域和基因座。威宁黑麦基因组组装对于破解黑麦基因组生物学,深化比较谷类基因组学研究,加速黑麦及相关谷类作物的遗传改良具有重要价值。 A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes https://mp.weixin.qq.com/s/xl2NsMrbn59nrbfSdD-kCg

基因组文章 |灵宝杜鹃《Molecular Ecology Resources》2021

转自: https://mp.weixin.qq.com/s/FEurcs-XGTS2TWGaVRmyrQ 近日,洛阳师范学院植物多样性保护课题组联合菲沙基因在国际主流期刊 Molecular Ecology Resources (IF=7.09,中科院一区)上发表了题为“ The chromosome-scale genome assembly,annotation and evolution of Rhododendron henanense subsp. lingbaoense ”的研究论文。该研究通过PacBio+Hi-C技术首次构建了我国特有杜鹃种-灵宝杜鹃的高质量参考基因组,随后基于比较基因组分析揭示了灵宝杜鹃与其它杜鹃间的共线性,同时也初步揭示了灵宝杜鹃逆境适应性的分子机制,从而为灵宝杜鹃的种质资源保护与进化研究提供了新见解。 杜鹃花具有较高的观赏、园艺与药用价值,近期也有大量关于杜鹃花属的基因组与转录组研究报道,这些报道对于杜鹃花属基因家族的进化和广泛的表型可塑性研究具有重要意义。但到目前为止,我国特有杜鹃种-灵宝杜鹃的基因组尚未有报道,这限制了对其遗传资源、环境适应性及分子进化的研究,因此构建灵宝杜鹃基因组具有重要理论意义。 材料 :灵宝杜鹃( Rhododendron henanense subsp. lingbaoense) 测序策略 :PacBio(220×)+Hi-C(100×)+Illumina(90×) 通过Survey分析,预估灵宝杜鹃基因组大小为654.12Mb,杂合为0.72%。随后研究者利用高深度的PacBio测序和Hi-C辅助组装,构建了高质量的染色体水平灵宝杜鹃基因组,其基因组大小为 622.72Mb,Contig N50=2.54Mb,Scaffold N50=50.18Mb 。接着,研究者通过多种方法证实了基因组组装的完整性与准确性,三代数据的比对率为97.85%,BUSCO评估基因组完整性为97%,二代数据检测基因组单碱基错误率仅为0.0003%;且与已发表的其它杜鹃属物种相比,本研究组装的基因组完整性和准确性都是最好的。 结合从头注释、同源注释和全长转录组注释,研究者在灵宝杜鹃种鉴定到 31098 个蛋白编码基因,平均每个基因的长度为 6393.37 bp ,其中88.77%的基因都可以得到功能注释。灵宝杜鹃基因组中65.76%的序列都是重复序列,其中LTR的含量最高。此外,研究者在灵宝杜鹃中还鉴定到 2251个rRNAs、448个tRNAs、488个snRNAs 以及94个miRNAs。 研究者选取14个近缘物种用于灵宝杜鹃的比较基因组分析,共鉴定到15483个基因家族,其中168个是灵宝杜鹃特有的基因家族。系统进化树分析表明, 杜鹃属内的亲缘关系较为密切 ,其分化时间大致在12.3 ~ 19.9百万年前,而猕猴桃、山茶属与杜鹃属的分化时间大致在64.6~73.8百万年前。 共线性分析表明,马缨杜鹃( Rhododendron delavayi )、圆叶杜鹃( Rhododendron williamsianum )、杜鹃( Rhododendron simsii )与灵宝杜鹃间的共线性非常好,且以单染色体与单染色体间的共线性为主,但不同杜鹃的基因组间也存在染色体重排事件。通过WGD分析,检测到杜鹃属和山茶属有一个相似的WGD峰(Ks值在0.637到0.715),结合分子时钟,研究者确定了杜鹃属植物先发生一次WGD事件(79.2百万年前),而后与近缘种山茶属产生了分化。基因扩增收缩分析表明,灵宝杜鹃中有2257个基因家族发生了扩张, 扩张基因显著富集在与对水杨酸的响应、细胞对酸化学的响应、防御反应的调节、应激反应的调节相关的通路中,这证实了灵宝杜鹃对逆境有着极强的抗性;收缩的基因则显著富集在与萜合酶活性、碳氧裂解酶活性和ADP结合相关的通路中。 之前研究表明, MYB的同源基因调控植物发育、花朵颜色和胁迫反应中发挥重要作用 ,研究者随后鉴定了灵宝杜鹃中MYB基因家族的变化。结果表明,灵宝杜鹃中存在110个MYB的同源基因,在13条染色体上都有分布,其MYB基因的数目要小于棉花、油菜等物种,且灵宝杜鹃中部分MYB基因存在串联重复事件。此外,基于MYB基因构建的系统进化树表明,灵宝杜鹃的MYB基因与拟南芥中的MYB基因属于不同的分类。这些结果将有助于后续MYB基因的功能验证工作。 总 结 本研究通过PacBio和Hi-C技术构建了染色体水平的灵宝杜鹃基因组,在此基础上通过与其它杜鹃植物及近缘植物进行比较分析,阐述了灵宝杜鹃的基因组进化、WGD事件、与逆境适应性相关基因的扩张与分类,从而为灵宝杜鹃种质资源保护、新品种选育及遗传进化研究提供了新见解。

提取的基因组dna大小为什么是21kb

基因组DNA会在你抽提过程中发生断裂,形成几十至几百kb的大片段.如果你跑的是比较浓的胶的话,无法区分不同大小的DNA,所以看起来像是一条带.你可以配点0.6%的胶加lamda hindIII marker跑长时间看看.

基因组文章 | 生姜 《Horiculture Research》 2021 单倍型基因组

生姜(Zingiber officinale)是一种极具价值的食药两用园艺作物, 既为传统中药的重要成分,又是重要的调味料 ,在我国有悠久的栽培历史。中国生姜栽培面积、产量和出口量均居全球第一位。长江中上游生姜总面积226万亩,占全国49.7%,是推动乡村振兴的优选产业。姜具有多年生宿根,根茎肉质、肥厚,内含多种营养成分,它除了含有蛋白质、碳水化合物、多种维生素和矿物质外,还含有姜辣素、姜油、姜醇等生物活性物质,具有调味、抗癌、抗真菌、抗炎症、抗氧化和抗血小板聚集等用途,是香料家族和药用植物家族的重要成员。姜辣素是生姜特有的呈味物质,也是生姜多种功能活性的主要功能因子,在调味品、化妆品和医疗保健等领域具有广阔的应用前景。尽管姜在世界范围内有显著的经济价值,但由于其有性繁殖困难,基因组庞大、杂合度高,相关的分子生物学和遗传选育工作一直停滞不前。此外,长久以来生姜基因组信息的缺乏,限制了我们对 合成调控机理的理解,导致生姜分子育种发展缓慢。 近日,Horticulture Research背靠背在线发表了两个不同品种生姜基因组数据,分别是平顶山学院植物遗传育种研究组与北京林业大学等单位合作的题为 《Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger》 的研究论文,以及重庆文理学院与西南大学等单位合作的题为 《Haplotype-resolved genome of diploid ginger (Zingiberofficinale) and its unique gingerol biosynthetic pathway》 的研究论文。 ☆☆☆ 平顶山学院植物遗传育种研究组等单位的研究解析了我国重要的传统生姜品种单倍型基因组序列,揭示了单倍型基因组间差异,推断了姜高度不育的基因组基础,初步澄清了姜酚(姜辣素)生物合成通路,为后续的功能研究和分子设计育种奠定了重要基础。 该研究以全国首个国家农产品地理标志登记保护的生姜品种 张良姜 为研究对象。据记载,自汉代起“张良姜”已有2000多年的种植历史,现保存在河南省平顶山市鲁山县张良镇。此品种有“姜中之王”美称,具有色泽深黄、辛辣芳香、气浓味长、质实丝多、百煮不烂、久贮不腐等优良特性。 该研究利用先进的长读长测序技术, 解析了“张良姜”单倍型基因组序列;检测了两个单倍型基因组间的遗传差异,以此推断出与姜高度配子败育率相关的结构变异区;揭示出两套基因组间等位基因表达差异可能与基因顺式调控区、编码区序列差异、转座子的临近效应以及选择压有关;利用基因共表达网络分析,初步解析了姜酚(姜辣素)生物合成相关的基因调控机制。 ☆☆☆ 重庆文理学院等单位的研究破解了西南地区主栽品种 竹根姜 的基因组,利用短读长(369.51 Gb),长读长PacBio(285.81 Gb)及Hi-C(563.16 Gb)策略组装出竹根姜 两套单倍型高质量基因组 ,单倍型的基因组大小分别为1.53 Gb (contig N50: 4.68 M)和1.51 Gb (contig N50:5.28 M),98.11%的序列锚定到22条染色体(图1)。PacBio 读长在2个单倍型的overlap分别为 97.95%和98.1%,显示了分型的准确性。 两套单倍型的Ka/Ks分析揭示生姜驯化历史过程中经历了相似的选择压力。通过等位基因分析,总共55,635个基因(占所有基因的72%)在两个单倍型中具有同源性。生姜17,226对等位基因中,11.9%在转录水平表现出染色体偏好性(图2)。该研究发现生姜基因组杂合度3.6%,是目前已报道杂合度最高的植物基因组。重复序列高,其中长末端片段重复(long terminal repeats,LTRs)占61.06%,可能是导致其基因组大、杂合度高的主要原因,同时也是生姜基因组进化的主要驱动力。生姜等位基因在两套单倍型中没有展现出表达差异,17,226对等位基因中有2055对(11.9%)在转录水平表现出染色体偏好性。 通过整合基因组、转录组和代谢组数据进行整合分析,该研究构建了生姜特有成分姜辣素的合成通路,筛选出12个参与姜辣素合成的关键酶家族(PAL, C4H, 4CL, CST, C3′H, C3OMT, CCOMT, CSE, PKS,AOR, DHN, 和DHT),鉴定出38个可能调控姜辣素合成的重要转录因子家族,并绘制出姜辣素合成的分子调控网络(图3)。 作者简介 Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger 平顶山学院程世平副教授、北京林业大学博士生贾凯华(现山东省农业科学院工作)、博士生刘辉和张仁纲博士(源宜(山东)基因科技股份有限公司)为共同第一作者。通讯作者是北京林业大学毛建丰副教授和比利时根特大学教授、比利时皇家科学院院士Yves Van de Peer。平顶山市农业科学院马爱锄博士、于从文研究员也参与了该项研究。该工作还包含来自瑞典于默奥大学、加拿大拉瓦尔大学、不列颠哥伦比亚大学、根特大学、比勒陀利亚大学和南京农业大学等单位的合作者。该研究得到河南省科技攻关以及平顶山学院高层次人才启动基金等项目的资助。 Haplotype-resolvedgenome of diploid ginger (ingeiber officinale) and its unique gingerolbiosynthetic pathway 该工作由重庆文理学院牵头,联合长江大学、西南大学和华大基因共同完成。李洪雷教授、吴林副教授、董照明副教授、姜玉松教授和姜三杰博士为论文的共同第一作者,刘奕清教授、夏庆友教授、简建波博士和邹勇副教授为论文的共同通讯作者。济南市第二农科院李承勇研究员、李庆芝高级工程师等参与了该研究。该研究得到了重庆文理学院生姜基因组重大专项、重庆市自然科学基金等项目的支持。 文章链接: Haplotype-resolved genome assembly and allelespecific gene expression of cultivated ginger https://www.nature.com/articles/s41438-021-00599-8 Haplotype-resolved genome of diploid ginger (Zingiberofficinale) and its unique gingerol biosynthetic pathway https://www.nature.com/articles/s41438-021-00627-7

【基因组——天麻】天麻基因组揭露植物适应异养

Mycoheterotrophs (真菌异养型植物):植物和真菌的共生大概开始于450百万年前。真菌异养是一种特殊的植物-真菌共生类型,植物从共生真菌获得固定碳和其他营养物质,而非光合作用。兰花最具特殊的地方是种子萌发和营养吸收依赖于真菌,例如通过于真菌形成根瘤。99%的兰花在幼年阶段从真菌伙伴获得碳营养,而成年后自养。另一小部分兰花由于缺乏achlorophyllous,是专性真菌异养。 天麻(Gastrodia elata) 基因组大小为1.06Gb,是专性的真菌异养型植物,包含18,969个蛋白编码基因。很多在植物中保守的基因从天麻基因组中删除了,包括大部分参与光合作用的基因。大量基因家族扩张证明了适应真菌异养生活方式。扩张的基因家族包括糖苷水解酶,尿素酶,ATPases等。作者还发现天麻叶绿体基因组比一般植物基因组小,而天麻线粒体基因组是至今最大的一个。 天麻(兰花科)是一种传统中药,属于专性真菌异养型植物。在其生活史中,至少存在两种真菌异养,种子萌发期是Mycena(小菇属),植物生长期是Armillaria mellea(蜜环菌)。为了获取营养,它和蜜环菌生活关联起来,并在36个月的生活史中,80%的时间都是作为块茎在地下生活。天麻可以帮助我们理解真菌异养型植物的基因组特点,因此,作者组装出了天麻的参考基因组,为理解植物-真菌关联的进化基础。 Kmer评估基因组为1.18Gb,基因组组装出3779条scaffold,scaffold N50为 4.9 Mb,contig N50为68.9 kb。Chloroplast genome为35,326 bp,Mitochorial genome为1,340,105 bp。Trinity组装出80,646条转录本,其中94.41%的转录本被认为是完整的(转录本的90%区域能被比对到同一条连续的scaffold上)。CEGMA评估为96.37%(239/248,保守的真核核心基因)。 TEs在基因组中占比66.18%,其中Class I (retrotransposons)和Class II (DNA transposons) TEs分别在基因组中占比55.94%和4.38%。天麻和桃红蝴蝶兰(Phalaenopsis equestris)LTR活动类似,而铁皮石斛(Dendrobium officinale)LTR呈现出最近爆发的活动。预测出天麻基因组中有18,969个蛋白编码基因,其中81.6%可被功能注释。天麻转录组分析揭示了在5个生长时期有10,548个差异表达基因,这些差异表达的基因聚成个不同的组,代表天麻的特定生长阶段。 比较兰科植物天麻,桃红蝴蝶兰,铁皮石斛,表明它们的分歧时间约67百万年。在天麻基因组中有两个古老的全基因组复制事件(WGD event)。该事件也在桃红蝴蝶兰和铁皮石斛的基因组中发现,表明事件发生在3种兰科物种分化之前。较老的WGD在大多数单子叶植物中都存在,而最近的WGD事件可能存在于现存的兰花植物中,并可能导致兰花植物的分化。 桃红蝴蝶兰,铁皮石斛分别由29,431,28,910个蛋白彪马基因,而天麻只有18,969个蛋白编码基因,是迄今为止观测到的被子植物最小的蛋白质组。与桃红蝴蝶兰,铁皮石斛相比,有功能注释的基因在天麻基因组中全局减少,同时还发现几个pfam 结构域家族在天麻基因组中显著性减小,与14个被子植物相比,天麻有最小数目的基因家族。一些基因和基因家族数量很少,表明在天麻基因组中被淘汰,并且许多其余的基因家族已经收缩。基因家族收缩分析表明与另两个兰科植物相比,天麻有3586个基因家族收缩。BUSCO分析表明195 (20.4%)个高保守的基因在天麻基因组中丢失。 假基因化和基因组重排是天麻丢失基因的原因。与桃红蝴蝶兰,铁皮石斛相比分别876, 1080个基因出现假基因化,全基因组比对发现487个基因由于局部重排而丢失。基因组中数据减少的基因是与植物抗性相关的基因。 天麻不进行光合作用,富集“叶绿体”,“质体“注释的基因在基因组中具有代表性的丢失 天麻线粒体有430个基因家族,1532个基因。GO分析表明这些基因参与一些代谢过程。 探究天麻基因组中扩张的基因家族对与真菌微生物关联的影响,发现单子叶甘露聚糖结合凝集素抗真菌蛋白家族(GAFP)在天麻基因组中包含20个基因,而桃红蝴蝶兰,铁皮石斛中分卸只有3个和10个。GAFP蛋白被证明在体外抑制子囊菌和担子菌真菌植物病原体的生长。80%的GAFP 基因表现出在原球茎,年轻块茎中,这两个生长阶段是天麻与真菌建立稳定共生之前。 ~

你知道为什么动物线粒体基因组比植物小那么多吗?

植物质体基因组进化正好是我课题的一部分,这里简要讨论一下植物线粒体基因组的特点,成因和后果。植物线粒体基因组的主要特点是:基因组大小和结构变异巨大,基因却极度保守;基因分布非常稀疏,含有大量非编码序列;存在大量的RNA编辑。大部分动物的环状线粒体基因组的大小约15-17kb,且结构相对保守,基因排列紧凑,这些特点都跟植物叶绿体基因组相仿,植物的叶绿体基因组大小在100-200kb之间。然而植物线粒体基因组却跟前两者有着迥然不同的特性,其大小一般在200-750kb之间。有些植物如黄瓜,其线粒体基因组竟然达到了1556kb之大。而且这种基因组大小的差异即便是在近缘物种之间都可以是非常巨大的。如在蝇子草属(Silene)中,夜花蝇子草(S.noctiflora)的线粒体基因组大小为6.728kb,而叉枝条蝇子草(S.latifolia)的线粒体基因组则有253kb之大。两者为同属植物,后者的线粒体基因组大小竟然达到了前者的30多倍。而即便在同一物种中,其线粒体基因组的差异也非常显著。如在白玉草(S.vulgaris)中,任何不同种群两两之间只有约一半的线粒体基因组序列是相同的(Sloanetal,2012)。虽然植物的线粒体基因组非常庞大,但其上的编码基因却并不多,排列得非常稀疏。植物的叶绿体基因组上有约100个基因,但比叶绿体基因组大的拟南芥线粒体基因组上,却只有约50多个基因,而人的线粒体基因组上有37个基因。拟南芥的线粒体基因数量不到人的两倍,其基因组大小却是后者的22倍。也就是说,植物线粒体基因组中,大部分都是非编码序列,这些序列占到了整个拟南芥线粒体基因组的60%以上。这些非编码序列由重复片段、由叶绿体基因组和和基因组转移而来的序列,甚至是基因水平转移获得的其它物种的序列构成。如最古老的被子植物互叶梅(Amborellatrichopoda)的线粒体基因组中,就有大量来自苔藓、绿藻和其它被子植物的序列片段(Rice,2013)。植物线粒体基因组结构变异巨大,线粒体基因却极度保守,是植物三套基因组中最保守,演化速率最慢的。黄瓜如此庞大的线粒体基因组上,却只比拟南芥多了四个基因。正是由于植物线粒体基因非常保守,区分度不足,所以一般不选作系统学研究的分子标记。这跟动物正好相反,动物的线粒体基因演化速率较快,所以在动物系统学研究中,它们是最常用的分子标记。那么是什么导致植物线粒体基因组如此庞大,涌入了如此多的非编码序列呢?又是什么导致在这样疯狂变异的基因组中,线粒体基因本身却能独善其身,处变不惊,稳如泰山呢?目前我们是用发生在线粒体非编码区和编码区的两套不同的DNA修复机制来解释的。

大熊猫有21对染色体,基因组大小与人相识,约为30亿个碱基对,包含2-3万个基因

因为X染色体和Y染色体上的基因不同,所以20+X+Y才是一个物种的完整基因组。这道题的答案先不告诉你,请仔细思考,如不明白请追问。哪里不明白请追问,满意请采纳,希望对你有帮助。

有谁知道CHO细胞中含有的基因组个数是多少?怎么算出来的?

科研人员采用新一代测序技术对CHO-K1细胞系进行测序、组装,其基因组大小约为2.45Gb;后结合转录组测序数据,在CHO-K1基因组中共预测了2.4万多个基因,并进一步对预测的基因进行了功能注释。

基因组测序

问题一:全基因组测序的技术路线 提取基因组DNA,然后随机打断,电泳回收所需长度的DNA片段(0.2~5Kb),加上接头, 进行基因簇cluster制备或电子扩增E-PCR,最后利用Paired-End(Solexa)或者Mate-Pair(SOLiD)的方法对插入片段进行测序。然后对测得的序列组装成Contig,通过Paired-End的距离可进一步组装成Scaffold,进而可组装成染色体等。组装效果与测序深度与覆盖度、测序质量等有关。常用的组装有:SOAPdenovo、Trimity、Abyss等。 问题二:个人全基因组重测序需花费多少钱? 人类基因组大小3G, 重测序一般需要测定至少20x以上的数据(数据乘数高的话对于信息分析是有海的),也就是说一般需要测定60G的数据,如果1G按照5000元算的话,需要30万元。 不过要看你的目的,现在illumina推出的my-seq测1个人的好像只需要几万。 问题三:什么是基因组测序技术 自1998年美国塞莱拉遗传公司组建以来,人类基因组研究开始由两部分科学家同时展开,分别是由公共经费支持的人类基因组工程和美国塞莱拉遗传公司。在研究过程中,他们也分别采用了两种不同的测序和分析的方法。塞莱拉公司的核心分析方法被称为霰弹法,人类基因组工程则采用了克隆法。 所谓霰弹法,其实是一种高度计算机化的方法,它先把基因组随机分成已知长度(2000个碱基对、1万个碱基对、5万个碱基对)的片段,然后用数学算法将这些片段组装成毗邻的大段并确定它们在基因组上的正确位置。 塞莱拉公司的科学家先用霰弹法测序DNA,并将整个基因组覆盖8次,然后用两个数学公式将人类基因组序列多次组装起来,确定出基因中的转录单元,预测出60%的已识别基因的分子功能。最后研究人员将人类基因组信息与此前已完成的果蝇和线虫的基因组序列进行比较,从而找出了三者共有的核心功能。 而人类基因组工程采用的克隆法则通过先复制更大段的人类基因序列,然后将它们绘制到基因组的适当区域进行研究。这种方法需要研究人员在早期把较多的时间和精力放到克隆和绘制草图上。 两个研究组将所得数据进行对比,经人类基因组工程的科学家、《科学》和《自然》杂志高级指导编辑评估,表明塞莱拉公司的基因组分析与人类基因组工程的分析结果虽然存在一些差异,但大部分地方都有极高的吻合度。 塞莱拉公司测定的序列覆盖了95%以上的人类基因组,其中约85%的人类基因组存在于按照正确顺序排列、至少包含50万个碱基对的片段中。这一序列为人类至少拥有2.6383万个控制合成蛋白质的基因提供了有力的证据,也为另外1.2731万个假设基因的存在提供了较弱的证据 问题四:RNA测序与整个基因组测序相比有什么优势? RNA测序也就是所谓的RNA-seq,通常指的是转录组测序,只测细胞中的转录本。只有基因组中被转录出来的那部分能测到。通常用于寻找差异表达基因以及发现新基因。而基因组测序是整个基因组都测,不管转录不转录,通常用于基因组组装,重测序进行基因分型等。 这是根本不同的两个东西,一个是测转录组,一个是测基因组,它们的不同就是转录组和基因组的不同。至于优势,根据自己的目的来判断吧。 欢迎追问。 问题五:个人基因组测序有哪些意义 理论上说,知道了序列,就可以确定这个人的基因,从而能够知道这个人的表型特征,或者对那些病是易感的,以后有可能得什么病,以及对将来对孩子的遗传等等… 但目前来说,个人的全基因组还没有什么用,因为现在我们对基因组中序列的信息了解的还太少,如SNP相关疾病,多基因遗传病等。在科研上全基因组测序,可以为我们提供数据库,以便分析相关的特征。 随着代号为AK1的韩国人的测序成功,目前世界上只有5个人进行了,全基因组测序,另外四个是:一名非洲优鲁巴人、基因研究的先驱詹姆斯u30fb沃森、克里格u30fb文特和一名代号为YH的中国人。 问题六:基因组测序的测序深度一般是多少 基因组测序的测序深度一般是10X。 测序深度是指测序得到的总碱基数与待测基因组大小的比值。假设一个基因大小为2M,测序深度为10X,那么获得的总数据量为20M。 基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理,如癌症或白血病,运动天赋,酒量等。

怎样构建基因组文库.基因文库的大小如何确定

怎样构建基因组文库.基因文库的大小如何确定基因文库技术分离目的基因 所谓文库(1ibrary)是指一种全体的集合.基因文库(gene library)则是指某一生物类型全部基因的集合.这种集合是以重组体形式出现.某生物DNA片段群体与载体分子重组,重组后转化宿主细胞,

基因组学总结

基因组学的目的是对一个生物体所有基因进行集体表征和量化,并研究它们之间的相互关系及对生物体的影响 。基因组学还包括基因组测序和分析,通过使用高通量 DNA测序 和生物信息学来组装和分析整个基因组的功能和结构。基因组学同时也研究基因组内的一些现象如上位性(一个基因对另一个基因的影响)、多效性(一个基因影响多个性状)、杂种优势(杂交活力)以及基因组内基因座和等位基因之间的相互作用等。 功能基因组学 是分子生物学的一个领域,它试图利用基因组项目(如基因组测序项目)产生的大量数据来描述基因(和蛋白质)的功能和相互作用 。功能基因组学侧重于基因转录、翻译和蛋白质-蛋白质相互作用的动态变化,与基因组提供的DNA序列或结构等静态信息截然相反。功能基因组学试图从基因、RNA转录本和蛋白质产品三个水平上回答有关DNA功能的问题。功能基因组学研究的一个关键特征是它们对这些问题的全基因组方法,通常涉及高通量方法,而不是传统的“个案基因”方法。 基因组学的一个主要分支仍然关注于对各种生物体基因组的测序,但全基因组的知识为 功能基因组学 关注各种条件下 基因表达 的模式创造了可能。涉及到的最重要的工具是芯片技术和生物信息学 。 试图描述由给定基因组编码的每个蛋白质的三维结构 。这种基于基因组的方法允许通过实验和建模相结合方法高通量进行蛋白结构鉴定。结构基因组学与传统结构预测的主要区别在于,结构基因组学试图确定基因组编码的每一种蛋白质的结构,而不是专注于一种特定的蛋白质。随着全基因组序列的公开,通过实验和建模相结合的方法可以更快完成 蛋白质结构预测 ,特别是由于大量测序基因组和以前解析蛋白质结构的公开,使得科学家可以根据已有同源物的结构对蛋白质结构进行建模。 结构基因组学 涉及到大量的结构鉴定方法,包括利用基因组序列的试验方法、基于已知同源蛋白质的序列或结构同源性基础上的建模方法、或基于没有任何已知结构同源性蛋白质的化学和物理特性的建模方法。与传统的结构生物学相反,结构基因组学来确定的 蛋白质结构 常常(但并不总是)先于对其功能的了解。这对结构生物信息学提出了新的挑战,比如要从蛋白质的三维结构中确定其功能。 表观基因组学 是研究表观基因组,即生物体中所有表观修饰的遗传物质的学科 。 表观遗传修饰 是对细胞DNA或组蛋白的可逆修饰,在不改变DNA序列的情况下影响 基因表达 。两个最具特征的表观遗传修饰是 DNA甲基化 和组蛋白修饰。表观遗传修饰在基因表达和调控中起着重要作用,并参与许多细胞过程,如分化/发育和肿瘤发生。直到最近,通过基因组高通量分析,才可能在全基因组范围研究 表观遗传学 宏基因组学 是研究直接从环境样品中提取的遗传物质的元基因组的学科 。宏基因组学也称为环境基因组学、 生态基因组学 或群落基因组学。传统的微生物学和微生物基因组测序依赖于培养的克隆培养物,而早期的环境基因测序克隆了特定的基因(通常是16S rRNA基因),从而获得自然群体的多样性。这些工作表明,绝大多数微生物的多样性被基于菌落培养的方法所遗漏。宏基因组使用“散弹枪”测序或大规模平行 焦磷酸测序 ,可以无偏好地获得样本群体中所有微生物成员的基因信息。由于宏基因组学能够揭示此前被隐藏的 微生物多样性 ,它为观察微生物世界提供了一个强有力的工具,其结果有可能彻底改变对整个生命世界的认知。 基因组学在许多领域包括医学、生物技术、人类学和其他社会科学等得到了应用。 新一代基因组技术使临床医生和生物医学研究人员能够大幅增加从大规模研究群体中收集的基因组数据量。当结合新的信息学方法将多种数据与基因组数据进行集成后,研究人员就能够更好地理解 药物反应 和疾病的遗传基础 。例如,All of Us 研究计划旨在收集100万参与者的基因组序列数据,并成为精准医学研究平台的重要组成部分。 基因组知识的增长使得 合成生物学 的应用越来越复杂。2010年,克雷格·文特尔研究所的研究人员宣布,成功部分合成了一种细菌-来源于 生殖支原体 基因组的合成支原体。 自然资源保护主义者可以利用基因组测序收集到的信息,更好地评估物种保护的关键遗传因素,如种群的 遗传多样性 ,或个体是否为隐性遗传疾病的携带者。通过使用基因组数据来评估进化过程的影响,并检测特定种群的变异模式,自然资源保护主义者可以制定计划,在不像标准遗传学方法那样留下许多未知变量的情况下,帮助特定物种。基因组大小是一个拷贝的单倍体基因组中DNA碱基对的总数。 基因组大小与 原核生物 和低等 真核生物 的形态复杂性呈正相关 。然而,在软体动物和上述所有其它高等真核生物之后,这种相关性已不再存在 ,主要是因为重复DNA的缘故。 生物体所有细胞都源自同一个单细胞,因此它们应该具有相同的基因组。但是,在某些情况下,细胞间会出现差异。细胞分裂期间的 DNA复制 和环境诱变剂的作用都可导致体细胞发生 突变 。在某些情况下,这种突变会导致癌症,因为它们会导致细胞更快地分裂并侵入周围组织。 在减数分裂期间, 二倍体细胞 分裂两次以产生单倍体生殖细胞。在此过程中,重组导致遗传物质从 同源染色体 重新洗牌,因此每个配子具有独特的基因组。

重组质粒是否整合到宿主基因组中

你问的第二个问题有点模糊啊,不明白“所有的情况”指的到底是那些情况。不过,可以先回答你第一个问题,答案是,有些质粒的确可以将基因整合进宿主的基因组中。例如,大肠杆菌有一种质粒叫做f质粒(fplasmid),又称f因子、致育因子或性因子,是大肠杆菌等细菌决定性别并有转移能力的质粒。其基因组含有与质粒复制和转移有关的许多基因,其中近1/3是tra区,另外有orit(转移起始点)、oris(复制起始点)、inc(不相容群)、rep(复制功能)和一些转座因子,后者可整合到宿主核染色体上的一定部位,并导致各种hfr菌株的产生。

人类的基因组有多少,是不是最多的

当然不是最多的,无论是基因组的大小还是基因的数量上看,人类基因组都不是最多的.不过,人类基因组的一些转录后、翻译后的修饰是非常普遍,并且类型繁多,估计这些因素也是决定了人类的功能的.人类的基因组大小只有3.2Gb,而比如红豆杉的基因组就有11Gb左右.

什么是基因组大小与C值的矛盾?造成这种矛盾的因素有哪些?

C value paradox是指基因组大小和生物的复杂性之间的关系。从低等生物,如微生物,到高等生物,如人类,随着基因组复杂性的增加,基因组的大小也呈现增加的趋势。但是后来发现在生物复杂性相似的物种中,基因组大小可以相差非常大。例如,植物中拟南芥只有100多个Mb,而和同为高等植物的百合基因组大小可以相差100倍。造成矛盾的原因现在基本认为是倍性和重复序列的多少造成的。如果满意请采纳。谢谢支持!

为什么可以用kmer估计基因组的大小

比如长度为L的基因组,kmer大小为k,则k的所有可能个数为:(L -K)+1,通过评估kmer大小和数量分布就可以估算出物种大小。详细参考:http://bioinformatics.uconn.edu/genome-size-estimation-tutorial/

是否可以根据基因组大小或基因数量判断生物体的复杂程度,请举例说明

不可以。根据基因组的大小或基因的数量来判断生物体的复杂程度。基因组是指一个生物体内所有遗传信息的总和,人是自然界进化的最复杂的动物,人的基因组最大,但人的基因数量并不是最多的。他们之间可能有关系,但并不能直接用来判断。一些研究人员曾经预测人类约有14万个基因,但最终科学家将人类基因总数定在3万左右,不超过4万,只是线虫或果蝇基因数量的两倍,人有而鼠没有的基因只有300个。如此少的基因数目,却能产生如此复杂的功能,说明基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义;也说明人类的基因较其他生物体而言,更有强大的作用,人类某些基因的功能和控制蛋白质产生的能力与其他生物的不同。

如何确定叶绿体基因组反向重复区的大小

如何确定叶绿体基因组反向重复区的大小叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝位于类核区。例如甜菜的叶细胞中每个类核体有4~8个拷贝的cpDNA,而每个叶绿体有4~18个类核体,每个细胞中约有40叶绿体。每个细胞总共有约6000cpDNA分子。在衣藻中(chlamydomonas)(单细胞生物)在细胞中一个叶绿体含有500~1500 cpDNA分子。  烟草和水稻(Oryza sativa)叶绿体全序列分析表明cpDNA基因组成有以下特点:  1.基因组由两个反向重复序列(IR)和一个短单拷贝序列(short single copy seguence, SSC)及一个长单拷贝序列(long single copy seguence, LSC)组成;  2.IRA和IRB长各10-24Kb,编码相同,方向相反。  3.cpDNA启动子和原核生物的相似,有的基因产生单顺反子的mRNA,有的为多顺反子mRNA;  4.尽管cpDNA大小各不相同,但基因组成是相似的,而且所有基因的数目几乎是相同的,它们大部分产物是类囊体的成分或和氧化还原反应有关(表20-7);  5.其tRNA基因(IRA、IRB上各有7个,LSC上有23个,共37个)中有内合子存在,最长者达2526bp,此和原核tRNA不同。有的内合子位于D环上,此和原核tRNA不同。有的内含子位于D环上,此和真核生物核tRNA内含子常位于反密码子环上也不相同;  6.所有叶绿体基因转录的mRNA都由叶绿体核糖体翻译。  并不是所有的叶绿体都含有IR,IR上含有4种rRNA基因,根据它们排列的情况叶绿体可分为3类:I类是IR 序列,4种rRNA各有2个拷贝,对称分布在IR上cpDNA也较大,如玉米、烟草、水稻、菠菜、地钱、衣藻(C.Yreinhardi),大部分叶绿体都属此类。II类:无反向重复IR,而在cpDNA一侧16S,23S以正向串联重复的形式(各3个拷贝)排列。如少数低等植物,裸藻(Euglena gracilis);III类:无IR和DR,rRNA只有一拷贝,如豌豆(Posum satirum)等。这可能在进化的过程中DNA片段的重复和倒位而造成的。

基因组的大小是随基因,染色体的复制等因素而改变的,如果时间越长基因组就会无限的增大吗?

不会无限增大,基因组一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组,所以之多发生分裂的时候会加倍,而不会无限增大的。当然其特性也不会发生多少变化,更深入的,你可以参考其定义。

物种越高等其基因组就越大两者成正比关系

物种越高,等其基因组就越大,两者成正比关系。是正确的。“物种越高等,其基因组就越大,两者成正比关系”是一个常见的科学现象。简单来说,高等物种的基因组通常比低等物种更庞大。这是因为在进化过程中,高等物种经历了更多的基因复制、突变、选择和拼接等过程,从而形成了更加复杂的基因组。这些复杂的基因组也为高等物种提供了更多的形态、表型和适应性可能性,使它们能够更好地适应环境,生存下去。当然,基因组大小的增长并不是绝对的,也不是所有的高等物种都具有更大的基因组。不同物种之间存在许多特殊的进化适应策略,基因组大小仅仅是其中之一。物种基因的检验方法通常有以下几种:1、PCR法:PCR是利用酶的体外扩增技术。它通过特异的引物(小分子的DNA序列),扩增出DNA的某一特定序列,例如古菌、细菌等微生物的基因。2、水平转移实验法:水平转移实验法是将基因从一种物种转移到另一种物种的实验方法。通过将外源DNA质粒加入到宿主细胞中,使外源基因序列得以表达。这种方法能够用来研究基因序列的相似性和物种间的关系。3、单倍体检测法:通过收集物种体内的DNA样本,将其制备成单倍体样本,然后通过染色体分析、核酸杂交等方法,测定不同物种的基因组大小以及从中分离出特定的基因序列。4、基因测序技术:利用新一代测序技术,能够对物种基因组的整个序列进行测定,并对基因组的结构、进化发育等进行深入探究。5、确定物种的遗传距离:通过对物种基因组序列的分析,确定基因组序列的相似性,从而确定血缘关系及亲缘关系的距离,这也是判定物种基因组的方法之一。这些方法都是常用的物种基因的检验方法。不同的方法有不同的适用场景和检验效果,选择合适的方法进行检验,能够为物种基因的研究和应用提供有效的支持。
 首页 上一页  1 2 3 4 5 6  下一页  尾页