基因

DNA图谱 / 问答 / 标签

试以λ噬菌体为例,说明病毒基因的表达调控如何影响其生活周期。

【答案】:λ噬菌体是一种温和噬菌体,感染大肠杆菌后存在2种可选择的发育途径:裂解细菌;或者使细菌处于溶源状态。噬菌体对这2种途径的选择,取决于噬菌体2种蛋白质之间的竞争。而这2种蛋白质都属于λ噬菌体的调节基因。一种是cⅠ蛋白,能阻断噬菌体的DNA酶基因、DNA聚合酶基因等的表达,避免细菌DNA被降解和噬菌体DNA自我复制,从而,产生噬菌体与细菌“和平共处”的结果。另一种是Cro蛋白,能阻抑cⅠ基因的转录,从而促进噬菌体向裂解途径转变。

基因工程中常用哪两类克隆载体?举例说明理想质粒载体应具备什么条件?

克隆载体(CloningVector):通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的外源DNA片段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见的载体有质粒,噬菌粒,酵母人工染色体。

分子生物学实验要构建含有两个基因的真核表达载体,怎么进行设计载体?

载体(vector) ,能载带微量物质共同参与某种化学或物理过程的常量物质,在基因工程重组DNA技术中将DNA片段(目的基因)转移至受体细胞的一种能自我复制的DNA分子。三种最常用的载体是细菌质粒、噬菌体和动植物病毒。必备条件  ①在宿主细胞中能保存下来并能大量复制,且对受体细胞无害,不影响受体细胞正常的生命活动②有多个限制酶切点,而且每种酶的切点最好只有一个,如大肠杆菌pBR322就有多种限制酶的单一识别位点,可适于多种限制酶切割的DNA插入③含有复制起始位点,能够独立复制;通过复制进行基因扩增,否则可能会使重组DNA丢失④有一定的标记基因,便于进行筛选。如大肠杆菌的pBR322质粒携带氨苄青霉素抗性基因和四环素抗性基因,就可以作为筛选的标记基因。一般来说,天然运载体往往不能满足上述要求,因此需要根据不同的目的和需要,对运载体进行人工改建。现在所使用的质粒载体几乎都是经过改建的。⑤载体DNA分子大小应合适,以便操作。 基因克隆的载体类型:质粒载体,噬菌体载体,柯斯质粒载体,M13噬菌体载体,噬菌粒载体

什么是 cdna文库?同基因组文库有何差别

(1)cDNA文库是指细胞全部mRNA通过逆转录得到cDNA后被克隆的总和。cDNA的组成特点是片段中不含基因的内含子和其他调控序列。cDNA文库构建基本步骤:①制备mRNA:全RNA提取与mRNA的分离提纯;②合成cDNA:oligo dT与mRNA3"端poly(A)杂交作为引物合成第一链,第二链合成是以第一链为模板,DNA聚合酶催化。常用RNase H切割mRNA-cDNA杂合链中的mRNA序列产生的小片段为引物合成第二链的片段,再连接成完整链;③制备载体DNA:由于cDNA分子的长度在0. 5~8kb,常用的质粒载体和噬菌体载体都可以,载体选择根据文库用途确定,如噬菌粒载体具有噬菌体的高效性和质粒载体系统可以利用蓝白斑筛选的便利;④cDNA的分子克隆:cDNA连入载体,转化重组体,扩增;⑤对构建的cDNA文库进行鉴定,测定文库包含的克隆数,评价文库质量。文库是否有价值主要从文库含量和插入片段的大小来评价,所构建文库必须有足够多的克隆数以确保基因组cDNA每一个序列至少有1个拷贝在文库内。(2)cDNA文库同基因组文库的差别主要在于基因组文库(尤其是真核生物的基因组文库)可能包含有非编码序列,含有更丰富的遗传信息。

为什么构建基因文库

(1). 质粒文库 质粒是最早用于基因克隆的载体。现已有各种适用于不同工作的如克隆、表达、测序等专用商品质粒。但在构建基因文库上,由于质粒相对较小并只能容纳比自身更小的片段,因此它不能用于构建核基因组文库,通常只用来构建短序列的克隆文库。例如叶绿体DNA分子较小,可以用质粒构建叶绿体DNA文库。质粒载体可用于生物cDNA文库构建。但只适合于高丰度的mRNA。(2). 噬菌体文库 目前用于基因克隆的噬菌体载体及其衍生载体很多,如单链的M13噬菌体载体、λ噬菌体载体、P1噬菌体载体、噬菌粒(phagemid或phasmid)等。其中使用最多的是入噬菌体。 λ-DNA为双链结构,长49kb。线性分子两端各有一条12个核苷酸的黏性末端称cos位点。分子中有约15kb可去掉的非必要基因区,又称“填充区”, “填充区”两侧的序列含有其增殖所必需的全部基因,称为左、右臂。“填充区”可被外源DNA取代,构成重组体,这是它成为克隆载体的结构基础。由于噬菌体头部包装容量的限制,重组λ-DNA分子大小只能在39—52kb之间。(3). 黏粒文库 黏粒(cosmid)也称柯斯质粒,是人工构建的由λ噬菌体的COS序列、质粒的复制子序列及抗生素抗性基因序列组合而成的一类特殊的质粒载体。COS序列是DNA包装进噬菌体颗粒所必须的。复制子通常是使用ColEl或pMBl的复制起始位点。黏粒具有λ噬菌体的某些性质,在克隆了大小合适的外源DNA片段并且在体外被包装成噬菌体颗粒后,能高效转导对入噬菌体敏感的大肠杆菌宿主细胞。在宿主细胞内按λ噬菌体方式环化,但不能通过溶菌周期,无法形成子代噬菌体颗粒(因分子中不具入噬菌体全部必要基因)。它也具有质粒载体的主要性质,在宿主细胞内可以像其他质粒一样复制,并与松弛型质粒相同,适量的氯霉素可促进扩增。因具抗生素基因,可以通过抗生素抗性筛选重组子。黏粒载体在构建时也加上了设在插入失活基因内的多克隆位点。黏粒载体的分子较小(2.8—24kb),但克隆容量很高,对外源DNA长度的要求是30~45 kb,上限几乎是入噬菌体载体容量(23 kb)的2倍,所以黏粒载体在核基因组文库构建上具有相当的优势,可克隆包括3,和5"调控区在内的完整的植物基因。(4).人工染色体文库 人工染色体载体是利用真核生物染色体或原核生物基因组的功能元件构建的能克隆大于50kbDNA片段的人工载体。其中有的载体既可用于克隆,又能直接转化,是进行基因功能研究的良好载体。近年来陆续发展起来的人工染色体文库有YAC库、BAC库、BIBAC库、PAC库及TAC库。

构建基因组文库的步骤 基因文库的质量标准 建立基因组文库的方法 建立基因组文库的其他方法 建立cDNA文库的

构建基因组文库的步骤A 分离基因组DNA;B 用超声波或限制酶等进行基因组DNA部分或完全降解;C 将降解物进行分级得到所需大小DNA片段;D 将DNA片段与载体连接(一般用λ噬菌体载体);E 将重组体导入宿主细胞;F 最后筛选鉴定重组子克隆。建立基因组文库的方法2—λ噬菌体基因组文库 可插入较大片段,最大可达23kb建立基因组文库的其他方法:cosmid基因组文库 YAC基因组文库 BAC基因组文库基因文库的质量标准:重组克隆的总数不宜过大, 以减轻筛选工作的压力;载体的装载量最好大于基因的长度, 避免基因被分隔克隆;克隆与克隆之间必须存在足够长度的重叠区域, 以利克隆排序;克隆片段易于从载体分子上完整卸下,重组克隆能稳定保存、扩增、筛选建立cDNA文库的基本步骤 (1)隔离总RNA和净化mRNA (2)合成的双链互补脱氧核糖核酸适合插入一个克隆载体(3)克隆cDNA合适的向量(4)转移到合适的宿主细胞的重组载体(5)筛查阳性克隆cDNA克隆的策略(1)自身引导的第二链合成+同聚物加尾(2)cDNA克隆方法的改进。尾随第一链寡核苷酸(DC)允许使用寡核苷酸引物( DG)将要开展的第二链(3)cDNA的定向克隆从基因文库中筛选分离目的基因克隆(1)制备核酸探针进行杂交筛选(2) 制备抗体进行免疫杂交筛选(3)根据生物大分子间的相互作用筛选目的基因(4)利用PCR技术筛选目的基因文库(5)利用噬菌体表面展示技术分离目的cDNA克隆:噬菌体展示(phage display):是在噬菌体表面表达已融合到噬菌体外壳蛋白的重组蛋白或多肽的技术。应用噬菌体展示技术的关键是构建表达性基因文库,这种文库称为噬菌体展示文库(phage display library )。常用的构建噬菌体显示文库的表达载体有两类:丝状噬菌体和以这些噬菌体复制起始序列为基础构建的噬菌粒(phagemid)。mRNA差别显示技术原理:在 mRNA3′端的 poly (A)5"上游的 2个碱基只有 1 2种组合。与此相对应,共可人工合成12种不同的下游引物,用以反转录mRNA 合成cDNA第一条链。这种引物通常称为3"端锚定引物,它由Oligo-d T后面接上两个碱基 (如 5′T1 1 - 1 2 MN3′, M=G、C或 A; N=A、G、C或 T)构成。这样,每一种此类人工合成的寡核苷酸引物,都将能够把总mRNA群体的1/12分子反转录成mRNA-cDNA杂交分子。由此可知,使用5′T1 1 - 1 2 MN3′引物,可以将整个mRNA群体在cDNA水平上,分成大致相等的但序列结构不同的12份亚群体。DDRT-PCR的主要步骤:Ⅰ.从不同发育阶段或不同基因型的细胞群体中分离mRNA,并以3"锚定引物作为反转录的引物,合成第一链cDNA;Ⅱ.用5"随机引物和某个3"端锚定引物对扩增第一链(掺入32P-dNTP);Ⅲ.用DNA变性测序胶分离扩增产物,X光片曝光后检测差别条带;Ⅳ.回收特异性差别条带;Ⅴ.用同一引物对扩增已回收的DNA条带;Ⅵ.用Northern,Southern及测序法分析所得的条带;Ⅶ.以该DNA片段做探针,筛选全长cDNA或核基因。 DNA插入诱变法分离目的基因DNA插入诱变法主要用于植物目的基因的克隆分离研究。其基本原理是,当一段特定的DNA序列插入到植物基因的内部或其邻近位置时,一般会诱导该基因发生突变形成突变体植株,或者在插入位置产生一个新的基因。 如果该DNA插入序列是已知的,便可用它作为DNA分子探针,从突变体植株的基因组DNA文库中筛选得到突变基因片段。然后利用此突变基因片段制备探针,从野生型植株的基因组DNA文库中克隆出野生型的目的基因。这样,插入的DNA序列相当于在植物基因上贴了一张标签,因此,DNA插入诱变法又叫DNA标签法(DNA tagging)。差别杂交和减法杂交技术分离目的基因差别杂交构建了基因文库后,如没有任何可供选择的探针进行筛选,或没有任何有关目的基因的核苷酸序列信息时,可以考虑用差别杂交法筛选目的基因片段。差别杂交(Differential hybridization)也称为差别筛选(Differential screening)法。特别适用于分离在特定组织中或发育的特定阶段表达的基因以及受生长因子调控的基因,亦可有效地用来分离经特殊处理诱导表达的基因。差别杂交的技术原理:有目的基因能正常表达和不能表达的两个不同的细胞群体。在这种情况下,分别制备两种不同细胞群体的mRNA提取物,其中一个群体含有一定比例的目的基因mRNA ,另一个群体不含有目的基因mRNA。差别杂交的技术原理过程:以这两种总mRNA(或是它们的cDNA拷贝)为探针,分别对由表达目的基因的细胞群体构建的cDNA文库进行筛选。当以目的基因表达的mRNA群体为探针时,所有包含重组体的菌落都呈阳性反应,在X光底片上呈现黑色斑点;而以目的基因不表达的mRNA群体为探针时,除了含有目的基因的菌落外,其余的所有菌落都呈阳性反应,在X光底片上呈现黑色斑点。比较这两种底片并对照原平板,变可以挑选出含有目的基因的菌落,供进一步研究用。差别杂交法的局限性:首先,差别杂交的灵敏度比较低,不适合低丰度mRNA的目的基因的分离。其次,差别杂交需要筛选大量的杂交滤膜,鉴定大量的噬菌斑,是一项十分耗时耗力的工作;第三,差别杂交重复性差。差别杂交涉及文库的滤膜影印,不同滤膜之间的DNA保有量往往不均一,杂交所得的信号强度也会不一致,需要重新进行点杂交,以做进一步的阳性克隆鉴定工作 。mRNA减法杂交基本原理:从表达目的基因的组织中提取mRNA并反转录成为cDNA,然后与无目的基因表达的组织中提取的mRNA做过量杂交,在两种组织中均表达的基因产物形成程cDNA/mRNA双链杂交分子,而特异mRNA反转录的cDNA片段仍然保持单链状态,这种单链cDNA分离出来即为差异表达的序列。基因突变技术分为两大类:位点特异性突变和随机突变。位点特异性突变又分两种类型:一类是通过寡核苷酸介导的基因突变(oligonucleotide-mediated mutagenesis);第二类是利用PCR,以双链DNA为模板所进行的基因突变。寡核苷酸介导的定点诱变的原理 使用化学合成的含有突变碱基的寡核苷酸片段作引物,启动单链DNA分子进行复制,随后这段寡核苷酸引物便成了新合成的DNA子链的组成部分。因此,所产生出来的新链便具有已发生突变的碱基序列。要求所设计的寡核苷酸引物除了所需的突变位点之外,与目的基因编码的区段完全互补。作为诱变剂的寡核苷酸序列,同待诱变的目的基因的互补序列之间,能形成一种稳定的唯一的双链结构。决定双链区段稳定性的主要因素是碱基的组分、核苷酸的错配以及寡核苷酸引物的长度等。寡核苷酸介导的定点诱变的基本步骤(a)将要进行突变的目标基因(或DNA片段)克隆于M13噬菌体载体或噬菌粒载体。(b)从重组的M13或噬菌粒中制备单链DNA。(c)将设计好的寡核苷酸突变引物的5"端用T4多核苷酸激酶进行磷酸化。(d)将上述突变引物与目标基因(单链的DNA模板)进行退火。(e)在存在DNA聚合酶和dNTP的情况下,使退火引物沿单链DNA模板延伸,然后新生链的末端用T4 DNA连接酶连接。(f)转染易感细菌。(g)筛选出带有突变的目标基因的噬菌斑。(h)从突变的重组噬菌体制备单链DNA,通过DNA序列分析确认突变位点的正确性。(i)从重组的M13噬菌体复制型双链DNA中回收突变的目标基因(DNA片段)。(j)将突变了的基因(DNA片段)重组入表达载体进行表达。第五章受体细胞应具备的条件(1)便于重组DNA分子的导入。如易形成感受态,具有较高的转化效率;(2) 能使重组体DNA分子稳定存在于细胞中。如限制性缺陷型; (3) 便于重组体的筛选。如具有与重组体互补的遗传性状; (4) 受体细胞遗传稳定性高,易于扩大培养或发酵生长,能进行高密度培养;对动物细胞要可悬浮培养,对培养基适应性要好;(5)安全性高,无治病性,不会对外界环境造成生物污染:感染与寄生缺陷型;(6)蛋白水解酶少,利于外源蛋白在细胞内的积累。尤其是对枯草芽孢杆菌。(7) 受体细胞的密码子偏倚性要小;(8) 具有较好的翻译后加工机制,便于真核目的基因的高效表达。 ▲糖蛋白不能在E.coli中表达;(9) 在理论研究和生产实践上有较高的应用价值;(10)对于用于基因扩增或基因高效表达的受体要用重组整合缺陷型。第六章克隆基因高表达的相关因素1有效转录开始 关键的一步,并限制外源基因表达的一步!构建表达载体的同时,选择强的和可控制的启动子和相关终止序列。2有效延长和终止转录正确 3 mRNA的稳定性4有效地转录开始5遗传密码子偏向6核糖核酸处理过程7终止密码子8表达载体9重组蛋白Lac 表达系统 以大肠杆菌 lac 操纵子调控机理为基础设计、构建的表达系统具有多顺反子结构,基因排列次序为:启动子(lacP)- 操纵基因(lacO) - 结构基因(lacZ-lacY-lacA);正调节因子 CAP;负调节因子 lac I Tac 表达系统 tac启动子是由 trp 的 –35 序列和 lacUV5 的 –10 序列拼接而成的杂合启动子。 调控模式与 lacUV5 相似,但 mRNA 转录水平高于 trp 和 lacUV5启动子(P tac = 3 P trp = 11 P lac),因此在要求有较高基因表达水平的情况下,选用 tac 启动子比用 lacUV5 启动子更优越。包涵体蛋白在一定条件下,外源基因的表达产物在大肠杆菌中积累并致密地聚集在一起,形成无膜的裸露结构,这种结构称为包涵体(inclusion body, inclusive body)。包涵体主要由蛋白质组成,并且大部分为外源基因的表达产物,它们具有正确的氨基酸序列,但构像却是错误的,因而包涵体蛋白一般没有生物学活性。除此之外,包涵体中还含有少量的DNA、RNA和脂多糖等非蛋白分子。包涵体形成的原因主要因为在重组蛋白的表达过程中,缺乏某些蛋白质折叠过程中需要的酶和辅助因子,或环境不适,无法形成正确的次级键等原因形成的。此外,还有以下原因:(1)表达量过高。(2) 重组蛋白的氨基酸组成(3)重组蛋白所处的环境:温度、pH(4)缺少真核生物中翻译后修饰所需酶类(5)培养条件不佳酵母基因表达载体的种类 自主复制型质粒载体:含酵母基因组的DNA复制起始区、选择标记和克隆位点等关键元件。较高拷贝数,细胞分裂时不能平均分配到子细胞中。 整合型质粒载体:不含酵母基因组的DNA复制起始区,但含有整合介导区。 着丝粒型质粒载体:在自主复制型质粒载体基础上构建而成,增加了酵母染色体有丝分裂稳定序列元件,可保证平均分配到子细胞中。1-2拷贝/细胞。 酵母人工染色体:以线性双链DNA形式存在于酵母细胞,每个细胞只有单拷贝。

单克隆抗体与基因克隆技术相结合

材料和方法1.1 材料1.1.1 细胞及菌株 HAb18为分泌抗人肝癌mAb的鼠杂交瘤细胞株,由陈志南建株〔4〕;正常肝细胞株QZG引自中国科学院上海细胞库。pCANTAB 5E克隆及表达载体,为Pharmacia公司产品。1.1.2 试剂 反转录系统为Promega公司产品;PCR引物: heavy chain primer 1和2(Pharmacia公司产品),分别为重链5′端和3′端引物;light chain primer mix: 为10种轻链5′端和3′端引物的混合物,用来扩增鼠Ig VL基因;linker primer mix,为带有Linker序列(Gly4Ser)3的重链3′端和轻链5′端的引物,用来将VH,VL拼接成ScFv基因;RS primer mix,为带有SfiI位点的重链5′端引物和带有NotI位点的轻链3′端引物的混合物,用来扩增ScFv基因片段并引入酶切位点。引物A,D分别为重链5′端引物(含EcoRI酶切位点)及轻链3′端引物(含SalI酶切位点)〔5〕。A,D引物的序列如下:引物A VH-1(正向):5′ GTGAATTCATGCAGGTGCAGCTGTTGGAGTCTGG 3′EcoRⅠ引物D VL-2(反向):5′ CAGTCGACTTACGTTTGATCTCCAGCTTGGTCCC 3′SalⅠ1.2 方法1.2.1 总RNA提取、cDNA第1链合成及VH和VL基因的扩增 取对数生长期的HAb18细胞,用异硫氰酸胍变性法,提取细胞总RNA。参照Promega公司反转录系统的产品说明书,反转录合成cDNA第1链。将cDNA第1链合成反应物分为两份,分别加入VH和VL引物各2 μl进行PCR。1.2.2 ScFv基因的组装 回收的VH和VL基因片段与linker primer mix等摩尔混合,加入dNTP至终浓度为2.5 mmol/L,Taq DNA聚合酶5u,进行7次PCR循环(94℃ 1 min,63℃ 4 min)。将VH和VL基因拼接为ScFv基因。在上述反应体系中,加入RS primer mix,再进行30次PCR循环,可在ScFv基因的两端分别加入SfiI和NotI酶切位点。1.2.3 ScFv基因的克隆和筛选 上述加端PCR产物经1.8% 琼脂糖凝胶电泳,玻璃乳回收后,用SfiI和NotI消化,并与以此两种酶双酶切的pCANTAB 5E噬菌粒DNA连接,转化E.coli HB2151,在SOBAG(含100 mg/L氨苄青霉素和2%葡萄糖的SOB培养基)琼脂板上筛选转化菌。从转化板上挑取单个菌落,用2×YTAG(含100 mg/L氨苄青霉素和2% 葡萄糖的2×YT培养液)于30℃培养过夜,以碱裂解法小量提取噬菌粒DNA,以引物A,D进行PCR扩增出ScFv基因片段,并克隆入pUC19载体。1.2.4 ScFv核苷酸序列的测定 以美国PE317-A型自动序列分析仪进行序列测定。1.2.5 可溶性ScFv基因的分泌型表达 将含ScFv基因的重组噬菌粒菌种接种于5 ml LB 培养基,过夜培养。加至50 ml SBAG(含100 mg/L氨苄青霉素和2%葡萄糖的SB培养液)中,30℃振荡培养1 h,5 000 r/min离心15 min,弃上清。将沉淀重悬于50 ml SBAI(含100 mg/L氨苄青霉素和1 mmol/L IPTG的SB培养液)中,37℃诱导3 h,离心同上。取沉淀悬于5 ml新配制的溶菌酶(1 g/L),20% (w/v)蔗糖,30 mmol/L Tris-Cl(pH8.0)及 1 mmol/L EDTA (pH8.0) 溶液中,冰浴10 min,4℃以12000r/min离心5 min,上清即为外周质部分。将其冷冻干燥后,贮于-20℃。临用时以0.01 mol/L PBS溶解至500 μl。1.2.6 ScFv基因可溶性表达产物的鉴定 采用SDS-PAGE及Western blot(二抗为鼠抗-E-tag抗体)进行鉴定。1.2.8 流式细胞仪分析ScFv的活性 收集培养的肝癌细胞SMMC 7721,正常肝细胞QZG及胃癌细胞SCG 7901,用10%FCS RPMI1640调整细胞浓度至5×106/L~1×107/L。每管加入40 μl细胞悬液,100 μl ScFv表达产物,再加入50 μl 1∶20灭活正常兔血清(用DPBS稀释),于4℃作用30 min,洗涤2次,以800 r/min离心5 min,弃上清。加入抗E-tag抗体8 μl(2.5 g/L),4℃作用30 min,洗涤2次,弃上清。加入50 μl FITC标记的羊抗鼠抗体,充分振摇,4℃作用30 min,洗涤2次,加入500 μl固定液,以流式细胞仪进行分析。同时设正常肝细胞、胃癌细胞为阴性对照组,肝癌细胞加亲本抗体Hab18为阳性对照组。2 结 果2.1 VH和VL基因的PCR扩增及ScFv基因的拼接 VH和VL基因测序结果显示,VH为363 bp,VL为342 bp,与预期的VH和VL基因片段大小相符。将VH和VL基因用linker连接成ScFv基因(其中linker为45 bp)。以此为模板加入RS primer mix进行PCR扩增,所获扩增产物的大小约为730 bp,表明VH,VL及linker primer mix的浓度配合准确,并引入了SfiI和NotI酶切位点(图1,见第Ⅳ页)。2.2 ScFv基因的克隆 将ScFv基因克隆入pCANTAB 5E中,连接物转化E.Coli HB2151。在SOBAG固体培养基上筛选转化的菌落。然后随机挑选8个菌落,小量制备噬菌粒DNA,以Sfi I 和NotI双酶切鉴定。若含有外源插段者,应切出约730 bp大小的片段。结果表明,8个克隆均含插段。2.3 ScFv基因的序列测定 如图2所示,ScFv基因全长为726 bp,包括预期的VH,VL基因和linker序列。VH基因序列处于linker的上游,VL基因序列处于linker的下游。2.4 可溶性ScFv蛋白的鉴定 可溶性ScFv-E-tag融合蛋白,预期的Mr为29 000。E-tag可作为蛋白标签,通过鼠抗E-tag抗体来检测ScFv基因的表达。将阳性克隆以1 mmol/L IPTG诱导3 h,对IPTG诱导和未诱导的菌体进行裂解,经SDS-PAGE后,在(Mr为29 000处多出1条明显的新生蛋白带,与预计的ScFv-E-tag融合蛋白的大小Mr为29 000)相符(图3,见第Ⅳ页)。同时做与图3相同的SDS-PAGE并进行Western blot,在Mr为29 000处有显色条带,即为能与抗E-tag抗体特异性结合的可溶性ScFv蛋白(图4,见第Ⅳ页)。2.5 可溶性ScFv蛋白与肝癌细胞的结合活性 以可溶性 ScFv蛋白为一抗,抗E-tag抗体为二抗,FITC-抗鼠IgG为三抗,用流式细胞仪测定荧光标记细胞的阳性率(图5,见第Ⅳ页)。肝癌细胞组: 无关抗体(抗-CD3)为1.6%,亲本抗体为97.5%,ScFv 为30.9%;正常肝细胞+ScFv蛋白为2.6%,胃癌细胞+ScFv蛋白 为4.1%。表明可溶性ScFv蛋白能与肝癌细胞特异地结合,而不与正常肝细胞和胃癌细胞结合。荧光显微镜观察,可溶性ScFv蛋白与肝癌细胞的膜抗原相结合,在细胞膜上可见颗粒状的荧光(结果未显示)。3 讨 论 随着Ig基因结构与功能研究的不断深入,基因工程新技术的不断涌现和成熟,基因工程抗体的研究取得了很大进展。现获得的各种基因工程抗体已基本克服了鼠源性mAb的缺点,及制备人源性抗体的困难,使之在基础医学研究和临床疾病的诊断、治疗和预防等领域,特别是肿瘤的治疗中,得到了极为广泛地应用,有的已进入Ⅲ期临床应用。运用基因工程重组技术,将鼠源性抗体恒定区和可变区的框架区以人源性相应抗体片段取代,可降低抗体的免疫原性,有效地减轻免疫排斥反应〔6〕。利用基因突变技术改变抗体的某些结构,则可提高抗体的亲和力,延长其半衰期〔7〕。另外,还可将抗体基因与其它功能性基因相连接,赋予抗体新的功能。 近年发展起来的抗体库克隆技术,可无需进行细胞融合制备杂交瘤,甚至无需进行免疫,即可直接从基因水平上,获得所需的针对相应抗原的抗体。制备基因工程抗体的关键,是获得抗体可变区基因,拼接成单链抗体基因,并表达出有生物学活性的产物。 本文从分泌抗肝癌mAb的杂交瘤细胞(HAb18)中,用RT-PCR,克隆出抗体可变区基因,其关键是PCR引物的设计。大多数研究者设计合成的引物,通常是针对V区FR1 5′端(或信号肽)的保守序列和J基因3′端序列(或恒定区基因序列)而设计的,特异性不够强,不能有效地扩增某些目的基因。Pharmacia公司噬菌体呈现系统中的混合引物,系针对鼠Ig基因不同家族的序列而设计的。从理论上讲,适用于所有类型的Ig,每种可变区基因都可获得扩增,对全套抗体库的构建非常重要。 本研究所用pCANTAB 5E是Pharmacia公司的产品,含有氨苄青霉素抗性基因,plac启动子和M13噬菌体基因间隔区片段,在多克隆位点与gⅢ编码区之间,有1个c-myc tag序列和琥珀终止码TAG,IPTG可诱导外源基因的表达。在不含有琥珀抑制基因的菌株(如HB2151)中,E-tag后的终止码被识别,多肽链的翻译终止于此,从而可生成具有生物学活性带有13肽E-tag的可溶性ScFv蛋白,释放于细菌周质中。E-tag为源于人c-myc基因的一段序列,对ScFv基因的结构和活性均无影响,可作为可溶性ScFv蛋白的标签,用抗E-tag抗体来检测ScFv基因的表达并纯化其产物。我们用含有ScFv基因的重组噬菌粒载体转化大肠杆菌HB2151,经IPTG诱导获得可溶性表达产物。用抗E-tag抗体做Western blot证实,表达产物为ScFv-E-tag融合蛋白。流式细胞仪分析表明,此ScFv融合蛋白可与肝癌细胞结合,荧光标记细胞的阳性率为30.9%,而不与正常肝细胞及胃癌细胞相结合,表明此ScFv蛋白具有肝癌结合的特异性。参考文献1 顾方舟,陈妙兰,陆如山等. 肝癌研究概况与展望. 北京: 中国协和医科大学,北京医科大学联合出版社,1993: 1-32 Hoston JS,Levinson D,Mudgett HM et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in E.coli. Proc Natl Acad Sci USA,1988;85: 5879-58833 Kroesen BJ,Wellenberg GJ,Bakker A et al. The role of apoptosis in bispecific antibody-mediated T cell cytotoxicity. Br J Cancer,1996 ;73(6): 721-7274 陈志南,刘彦仿,杨继震等. 抗人肝细胞癌单克隆抗体的产生及其相应抗原的免疫组化定位研究. 单克隆抗体通讯,1989;5(2): 33-365 杨安钢,吉昌华,韩 骅等. 抗人CD8单抗κ轻链可变区基因的克隆和序列测定. 生物化学与生物物理进展,1992;19(4): 286-2886 Man SC,Jeanne BK,Bednarik EJ. Humanized anti-Lewis Y antibodies: in vitro properties and pharmacokinetics in rhesus monkeys. Cancer Research,1996;56: 1118-11257 Mats O,Henrik O,Michael M et al. Light chain shuffling of a high affinity antibody results in a drift in epitope recognition. Mol Immunol,1996;33(1): 47-56(收稿 1998-03-03 修回 1998-03-26)

常用的基因载体有哪些

在基因工程中最常用的载体是质粒,此外还有噬菌体、动植物病毒等。

基因工程中常用哪两类克隆载体?举例说明理想质粒载体应具备什么条件?

质粒载体、噬菌体载体 理想质粒载体条件:1. 具有复制起始点2. 具有两种以上易被检测的选择性标记3. 在选择标记上具有多种限制酶的单一切点4. 具有尽可能小的相对分子质量5. 应属于松弛复制型6. 应为非传递性质粒理想值粒载体例子:(一) pBR22质粒载体:1. 相对分子质量较小2. 具有一个复制起始点,属松弛复制性载体3. 含四环素抗性和氨苄青霉素抗性基因,便于作为选择性标记4. 有24种单一限制酶识别位点,有利于检测重组转化子(二) pUC质粒载体1. 具有很小的相对分子质量和很高的拷贝数2. 适合用于组织化学方法检测重组体3. 具有多克隆位点MCS区段。可使具两种不同粘性末端的多种外源DNA片段无需借助其它操作而直接定向克隆到pUC质粒载体上。

在基因工程实验中采用puc18质粒作为克隆载体的优点是什么?

1 松弛质粒,可在宿主菌中大量存在,有利于增加克隆数量. 2 具有多克隆位点,便于插入外源基因 3 具有抗生素抗性基因,便于筛选转化子. 4 具有lacZ基因,可进行蓝白斑筛选,便于筛选重组子.

基因载体与基因表达载体的区别?

一、构成不同基因表达载体:构成包括启动子、终止子、标记基因、目的基因。重组质粒:构成包括目的基因片段、质粒、酶。二、对象不同基因表达载体:基因表达载体的对象通常是活细胞。重组质粒:重组质粒的对象通常是细菌。三、原理不同基因表达载体:将不同来源的基因在体外构建杂种DNA分子,然后导入活细胞。重组质粒:用限制性内切酶切割质粒DNA和目的DNA片段, 在体外使两者相连接, 得到重组质粒。扩展资料一、基因表达载体分为两大类:1、病毒载体病毒载体主要包括慢病毒、腺病毒、逆转录病毒、腺相关病毒等。2、非病毒载体非病毒载体主要包括裸露DNA、脂质体、纳米载体等。二、基因表达载体的过程过程包括:过表达质粒选择、目的基因获取、引物设计、过表达质粒构建。在进行基因过表达过程中,可以选择不同的过表达载体。过表达载体与克隆载体比较而言,加入一些与表达调控有关的元件即成为表达载体。参考资料来源:百度百科-基因表达载体百度百科-重组质粒

基因克隆载体的功能和应具备的条件是什么

一、载体的功能1.运送外源基因高效转入受体细胞2.为外源基因提供复制能力或整合能力3.为外源基因的扩增或表达提供条件二、载体应具备的条件1.具有对受体细胞的可转移性2.具有与特定受体细胞相适应的复制位点或整合位点3.长度尽可能小,以提高其载装能力4.具有多种单一的酶切位点5.具有合适的选择性标记附图:

基因工程中的克隆载体与表达载体有什么不同

克隆载体是在克隆过程中用到的各种质粒,比如为了扩增目的基因的高拷贝质粒、为了方便测序的测序质粒、为了连接PCR产物的TA质粒、为了重组的穿梭质粒等等。克隆载体一般有较强的复制能力,利于基因的保存和扩增,而且提供丰富的酶切位点等等。它不必有强启动子,因为不重于表达。表达载体是基因克隆结束后,为了在特定细胞内表达而构建的。他重点在于表达,有各种各样的启动子适应于不同种类的细胞,并且有各种各样,如诱导等可控的表达调控方式。

基因克隆载体连接步骤

基因克隆的步骤:1、获取目的基因;2、将目的基因与载体连接;3、重组体载入受体细胞;4、重组体的筛选、克隆。具体到载体连接这一步,将酶切后的载体与目的片段加入相应的连接体系中就可以了。

基因克隆载体连接步骤

基因克隆的步骤:1、获取目的基因;2、将目的基因与载体连接;3、重组体载入受体细胞;4、重组体的筛选、克隆。具体到载体连接这一步,将酶切后的载体与目的片段加入相应的连接体系中就可以了。

基因克隆载体需要有哪几个条件?

用人工方法取得目的基因的适宜载体,即质粒(一种环状双链DNA)或病毒。基因克隆载体必须具备三个条件,具有能使外源DNA片段插入的克隆位点;能携带外源DNA进入受体细胞,或游离在细胞质中进行自我复制,或整合到染色体DNA上随染色体DNA的复制而复制;必须具有选择标记,以便筛选承载外源DNA的受体细胞。目前原核受体细胞的载体主要有细菌质粒(松弛型)和λ噬菌体两类,真核细胞受体的载体主要有SV40病毒(用于动物转化)和Ti质粒(用于植物转化)。

基因克隆载体通常是由什么改造而来的

基因克隆载体通常是由DNA改造而来的。载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。介绍基因克隆技术包括了一系列技术,它大约建立于70年代初期。美国斯坦福大学的伯格(P.Berg)等人于1972年把一种猿猴病毒的DNA与λ噬菌体DNA用同一种限制性内切酶切割后,再用DNA连接酶把这两种DNA分子连接起来,于是产生了一种新的重组DNA分子,从此产生了基因克隆技术。1973年,科恩(S.Cohen)等人把一段外源DNA片段与质粒DNA连接起来,构成了一个重组质粒,并将该重组质粒转入大肠杆菌,第一次完整地建立起了基因克隆体系。

基因克隆的载体有哪些基本特征

基因载体是携带目的基因、实现目的基因无性繁殖或表达有意义的蛋白质所采用的DNA分子。分为克隆载体和表达载体。可用做基因载体的有:质粒DAN、噬菌体DNA和病毒DNA。克隆载体应具备以下基本特征:自我复制能力、具有筛选标志基因和多个限制性核酸内切酶的单一位点等。表达载体除具有以上特征外,还应具有启动子等转录调控序列、适当的翻译控制序列、合理设计的多克隆位点等。

基因克隆载体连接步骤 具体、详细的操作。包括连接载体和片段的量如何确定之类的。

基因克隆的步骤: 1、获取目的基因; 2、将目的基因与载体连接; 3、重组体载入受体细胞; 4、重组体的筛选、克隆. 具体到载体连接这一步,将酶切后的载体与目的片段加入相应的连接体系中就可以了.

可用来进行基因克隆载体改造的改造的生物材料有 哪些

载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具.载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等.载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征.质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合.质粒有严紧型和松弛型之分.严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒.而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒.质粒经过改造品种繁多,常用的有pBR322、pUC系列等.这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Apr、抗四环素Tcr等)或大肠埃希菌部分乳糖操纵子(E.coliLacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达.质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点.常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统.噬菌体应和相应的宿主细胞配合使用.以上载体各有特点,便于选择,灵活应用.

基因工程中动物病毒克隆载体有哪些

质粒载体、噬菌体载体 理想质粒载体条件:1. 具有复制起始点2. 具有两种以上易被检测的选择性标记3. 在选择标记上具有多种限制酶的单一切点4. 具有尽可能小的相对分子质量5. 应属于松弛复制型6. 应为非传递性质粒理想值粒载体例子:(一) pBR22质粒载体:1. 相对分子质量较小2. 具有一个复制起始点,属松弛复制性载体3. 含四环素抗性和氨苄青霉素抗性基因,便于作为选择性标记4. 有24种单一限制酶识别位点,有利于检测重组转化子(二) pUC质粒载体1. 具有很小的相对分子质量和很高的拷贝数2. 适合用于组织化学方法检测重组体3. 具有多克隆位点MCS区段。可使具两种不同粘性末端的多种外源DNA片段无需借助其它操作而直接定向克隆到pUC质粒载体上。

基因克隆载体的功能和应具备的条件是什么

一、载体的功能1.运送外源基因高效转入受体细胞2.为外源基因 提供复制能力或整合能力3.为外源基因的扩增或表达提供条件二、载体应具备的条件1.具有对受体细胞的可转移性2.具有与特定受体细胞相适应的复制位点或整合位点3.长度尽可能小,以提高其载装能力4.具有多种单一的酶切位点5. 具有合适的选择性标记附图:

基因克隆载体的功能和应具备的条件是什么

一、载体的功能 1.运送外源基因高效转入受体细胞 2.为外源基因 提供复制能力或整合能力 3.为外源基因的扩增或表达提供条件 二、载体应具备的条件 1.具有对受体细胞的可转移性 2.具有与特定受体细胞相适应的复制位点或整合位点 3.长度尽可能小,以提高其载装能力 4.具有多种单一的酶切位点5. 具有合适的选择性标记附图:

基因克隆载体连接步骤

基因克隆的步骤:1、获取目的基因;2、将目的基因与载体连接;3、重组体载入受体细胞;4、重组体的筛选、克隆。具体到载体连接这一步,将酶切后的载体与目的片段加入相应的连接体系中就可以了。

什么是基因克隆载体?

单独一个包含启动子、编码区和终止子的基因,或者组成基因的某个元件,一般是不容易进入受体细胞的。即使采用理化方法进入细胞后,也不容易在受体细胞内稳定维持。把能够承载外源基因,并将其带入受体细胞(host:cell)得以稳定维持的DNA分子称为基因克隆载体(gene:cloning:vector)。作为基因克隆载体一般应该具备以下条件:(1)在克隆载体合适的位置必须含有允许外源DNA片段插入的克隆位点,并且这样的克隆位点应尽可能的多。作为克隆位点的限制性内切核酸酶的识别序列一般在克隆载体上只有一个。为了便于多种类型末端的DNA片段的克隆,克隆载体中往往组装一个含多种限制性内切核酸酶识别序列的多克隆位点(MCS)连杆。(2)克隆载体能携带外源DNA片段(基因),容易进入宿主细胞,而且进入效率越高越好,或能停留在细胞质中进行自我复制;或能整合到染色体DNA、线粒体DNA和叶绿体DNA中,随这些DNA同步复制。(3)克隆载体必须含有供选择转化子的标记基因,如根据转化子抗药性升降进行筛选的氨苄青霉素抗性基因(apsuperscriptrsuperscript或ampsuperscriptrsuperscript)、氯霉素抗性基因(cmsuperscriptrsuperscript)、卡那霉素抗性基因(kmsuperscriptrsuperscript或kansuperscriptrsuperscript)、链霉素抗性基因(smsuperscriptsuperscriptsm}}r)、四环素抗性基因(tcsuperscriptrsuperscript或tetsuperscriptrsuperscript)等,根据转化于蓝白颜色进行筛选的β-半乳糖苷酶基因(emphasis:role=italiclacZemphasis),以及表达产物容易观察和检测的报告基因emphasis:role=italicgusemphasis(β-葡萄糖苷酸酶基因)、emphasis:role=italicgfpemphasis(绿色荧光蛋白基因)等。(4)克隆载体必须是安全的,不应含有对受体细胞有害的基因,并且不会任意转入除受体细胞以外的其他生物的细胞,尤其是人的细胞。(5)容易插入外来核酸片段,容易从宿主细胞中分离纯化出来,便于重组操作。克隆载体在基因工程中占有十分重要的地位。目的基因能否有效转入受体细胞,并在其中维持和高效表达,在很大程度上取决于克隆载体。目前已构建和应用的基因克隆载体不下几千种,根据构建克隆载体所用的DNA来源可分为质粒载体、病毒或噬菌体载体、质粒DNA与病毒或噬菌体DNA组成的载体以及质粒DNA与染色体DNA片段组成的载体等。

抗病基因产物的保守序列结构是什么?

(1)富含亮氨酸重复(LRR):LRR结构域具有亮氨酸残基构成的重复序列,有的还具有天冬酰胺和脯氨酸残基。在自然界中,LRR存在于多种功能不同的蛋白质中,与蛋白质之间的相互作用和信号传递有密切关系。在哺乳动物、果蝇、酵母菌和植物中都已发现含有LRR结构的蛋白质,例如猪的核糖核酸酶抑制蛋白、果蝇的Toll蛋白、酵母菌的腺苷酸环化酶等都含有LRR结构。植物含有LRR的蛋白,在细胞生长发育和抗病反应过程中都起重要作用,例如R基因编码蛋白、类受体蛋白激酶、多聚半乳糖醛酸酶抑制蛋白等。(2)核苷酸结合位点(NBS):在真核生物的多种蛋白中,都有NBS。这些蛋白对于细胞生长、分化、骨架的形成、小泡运输和防卫反应都起关键作用。NBS由3个区域构成。第一区域为磷酸结合环(P-loop),又称激酶1a,其作用是与ATP或GTP的磷酸结合。第二个区域为激酶2,有4个疏水氨基酸残基,其后紧跟1个带负电荷的天冬氨酸。但在植物中,这一区域的两侧还有高保守的氨基酸。在含有TIR的R蛋白中,激酶2的最后一个氨基酸残基是天冬氨酸,而其他为色氨酸。第三区域为激酶3a,与DNA的嘌呤或核糖结合有关,通常含有一个精氨酸残基。(3)丝氨酸/苏氨酸蛋白激酶域(serine/threoninekinase,S/TK):番茄的Pto基因和水稻的Xa21基因都编码丝氨酸/苏氨酸蛋白激酶域。与小麦抗叶锈基因Lr10紧密连锁的一个基因LRK10,也编码丝氨酸/苏氨酸蛋白激酶域。该激酶在抗病信号传递中通过磷酸化其他信号分子而传递信息。(4)亮氨酸拉链(LZ):LZ存在于一些寡聚蛋白中,许多DNA结合蛋白就含有LZ。LZ中每7个氨基酸残基构成一个重复,第七位置上的残基是(异)亮氨酸。这些(异)亮氨酸在蛋白质二级结构中形成α-螺旋的疏水脊,在疏水交互作用下,两个LZ中的(异)亮氨酸残基形似拉链,将其所在的亚基聚合成多聚体。LZ的独特拉链结构有利于蛋白质的二聚化、三聚化,并促进蛋白质之间的特异性相互作用。R基因中的LZ可能与病原物产生的配体结构特异性结合有关。(5)Toll/白介素-1类受体区域(TIR):果蝇的Toll蛋白与哺乳动物的白介素-1受体,在各自免疫系统信号传递中起重要作用。通过与病原物结合,将信号传递给传递因子,如果蝇的Dif因子,哺乳动物的NF-κB因子等。这些传递因子获得了由细胞质向细胞核内传输的能力,并与各免疫反应基因的启动子相结合,引发免疫反应基因的表达,对病原物产生抵抗性。植物中也可能存在与昆虫和哺乳动物自然免疫系统相似的抗病途径。烟草的N基因、拟南芥的RPP5基因、亚麻的L6和M基因所编码的蛋白质产物,N-端的150个氨基酸序列为TIR结构。

如何利用基因组编辑育种改良水稻品质

水稻是世界上最重要的粮食作物之一,全球约二分之一的人口以稻米为主食,传统的遗传育种方法在提高水稻产量、抗性和品质方面已作出了重要贡献,但由于稻属种质资源的限制及常规育种方法的局限性,给水稻进一步的遗传改良带来一定困难。随着分子生物学研究的深入,基因的分离、克隆和重组技术以及转基因技术的日趋成熟,遗传转化已成为水稻遗传改良的一种有效手段。抗虫、抗病和抗除草剂转基因水稻的培育可为水稻的高产与稳产提供重要保证,也可减少化学农药的使用,改善环境质量。通过调控淀粉合成相关基因的表达,可以改良稻米的淀粉品质,以提高其食味品质或加工品质。 本研究重点利用转基因技术进行水稻改良的研究,主要研究内容包括两大方面。一是将不同来源的抗虫、抗病和抗除草剂基因,包括苏云金芽孢杆菌(Bacillus thuringiensis,Bt)毒蛋白cryIA(c)基因、雪花莲凝集素(Galanthus nivalis agglutinin, GNA)基因、甜椒编码类铁氧还原双亲蛋白(Amphipathic protein 1, AP1)基因和土壤吸水链霉菌(bialaphos resistance, Bar)抗除草剂基因,导入4个高产粳稻品种广陵香粳、武香粳9号、武香9915和扬辐粳8号中,研究抗病、抗虫和抗除草剂转基因水稻,特别是含有不同目的基因组合的多抗转基因水稻的培育方法,二是,将控制直链淀粉合成的水稻蜡质(Waxy,Wx)基因的不同转基因构建,包括其全长基因组序列(简称全长Wx基因)、Wx-cDNA和反义RNA结构(简称反义Wx基因),导入具有不同直链淀粉含量的水稻品种协青早、龙特甫、武香粳9号、武香9915、苏御糯和广陵香糯等中,研究调控蜡质基因表达对改良稻米品质的效果,在此基础上进一步获得具有优良食味品质或特高直链淀粉含量的水稻新品种(系)。主要研究结果如下: 1、转Bt基因水稻。通过双菌双载体或超双元载体介导的农杆菌介导共转化法,将Bt cryIA(c)基因和潮霉素抗性选择标记基因(HPT)同时导入粳稻品种武香粳9号和广陵香粳中,从其自交后代中筛选获得了无HPT基因的转Bt基因水稻材料。抗虫性鉴定结果表明,转Bt基因水稻对稻纵卷叶螟和二化螟的抗性较未转化对照有了明显提高,具体表现为:稻纵卷叶螟对转Bt基因水稻离体叶片的危害程度明显小于未转化对照,转Bt基因水稻离体叶片上的稻纵卷叶螟幼虫全部死亡;二化螟高龄虫对分蘖期转Bt基因水稻离体茎杆危害程度明显小于未转化对照,转Bt基因植株茎杆上只有少量的螟虫排泄物;二化螟幼虫在苗期转Bt基因水稻上死亡率达到100%,较未转化对照有明显提高;二化螟造成的成株期转Bt基因水稻的枯心率明显低于未转化对照,部分转化子对二化螟的抗性由未转化对照的高感上升为抗或中抗级别;在不施用任何农药的田间自然条件下,转Bt基因水稻表现为无稻纵卷叶螟危害,未转化对照的受害率达100%。 2、转AP1基因水稻。通过超双元载体介导的农杆菌共转化法,将AP1基因和HPT基因同时导入粳稻品种武香粳9号、广陵香粳中,从其自交后代中筛选获得了含有AP1基因而无HPT基因的水稻。抗病性鉴定结果表明,转AP1基因水稻叶片上白叶枯病病斑长度均极显著小于未转化对照,广陵香粳转基因水稻的抗性级别由未转化对照的中抗上升为抗;转AP1基因水稻虽然与未转化对照对纹枯病的抗性级别均为中感,但相对病班长度均显著或极显著地小于未转化对照;大部分转AP1基因水稻对稻曲病的抗性较未转化对照有所提高。 3、转GNA和Bar基因水稻。以粳稻品种广陵香粳、武香9915和扬辐粳8号为材料,以同时含有GNA和Bar基因的双元载体EHA105/pCUGNA-BAR介导的转化法,将GNA和Bar基因导入以上受体品种中,通过除草剂抗性鉴定和PCR分析,筛选获得了同时含有Bar基因和GNA基因的纯合转基因水稻。抗性鉴定表明,褐飞虱在转基因水稻上的进食量显著低于未转化对照和感虫对照品种台农本地1号(TN1),褐飞虱在转基因水稻上的繁殖率亦显著低于未转化对照,即转基因水稻对褐飞虱的进食量和繁殖率有明显的抑制作用;转基因水稻4901-1苗期对褐飞虱的抗性达到了中抗水平,较未转化对照扬辐粳8号的感虫水平有了明显提高。 4、聚合多个抗性基因培育多抗转基因水稻。利用双菌双载体介导的共转化,将AP1基因、Bt基因和HPT基因同时导入粳稻品种广陵香粳中,并将其与同时含有GNA和Bar基因的转基因水稻杂交,从其自交后代中筛选获得了同时含有两个、三个或四个目的基因、但无HPT基因的多种类型的多价转基因水稻材料。通过抗性鉴定试验表明,这些多价转基因水稻表现出预期的抗病和/或抗螟虫和/或抗飞虱和除草剂的多抗特性,具体表现为:(1)含AP1基因的多价转基因水稻对白叶枯病(KS-1-20)的抗性级别与只含AP1基因的

人类基因的历史地图的介绍

《人类基因的历史地图》是史帝夫·奥森编著的一本图书。该书主要介绍了遗传基因专家现在才开始解读我们的DNA纪录,但他们已经发现了一个波澜壮阔的故事:所有世人都是约十五万年前生活在东非的一名妇女的苗裔。而且,DNA研究已经能够追踪现代人类走出非洲散布到世界各 地的足迹。

人类基因的历史地图的主要内容

过去,各族裔不断想知道彼此有无关连,基因研究证实,所有人类都彼此相连。无论是强盛的汉人、在各地殖民的欧洲人、散布全球犹太人还是猎羚羊的布什人,全部都是同一人类家庭的成员。过去有些人认为,不同族群之间有根本的生物差异,他们相信不同族群之间的侵略性、宗性和发明能力不可能是后天学习的结果,一定和遗传基因有关。但遗传学研究证明事实不然,不同族群之间的关系太密切了,他们只在最表面的地方有差别,文化差异并不来自我们的生物性,而与个人累积的经验有关。本书探索五个广大区域的基因故事,包括非洲(含中东)、亚洲、澳洲、欧洲和美洲,以及人种高度融合的夏威夷,追踪地区内的现代人类从最初出现至今的历史,也追踪了语言的起源和分化,告诉我们人类如何变成今天我们看到的不同种族和民族。

叶绿体的DNA会不会基因突变

会的,叶绿体的DNA也是会产生基因突变,但是因为叶绿体的DNA总量相对较小,突变的可能性也小,而且叶绿体也是在不断的消亡更新的,所以即使突变出问题了也会很快瓦解消失了。

叶绿体中的DNA算不算基因

当然算,包括线粒体也含有基因,细胞里的基因分为核基因和质基因,叶绿体中的基因属于质基因。

如果把目的基因导人叶绿体DNA中,就可以避免"基因污染",原因是 .

叶绿体存在于细胞质中,所以在减数分裂生成精子或卵细胞的时候,其中的DNA是随着细胞质一起传给下一代的.而我们知道,精子成熟之后失去了大部分的细胞质,其中不含叶绿体;而在受精卵中,细胞质绝大部分是来自于卵细胞的,也就是说所有的叶绿体都来自卵细胞.所以精卵结合的时候,父本的叶绿体DNA无法传给下一代,而母本的叶绿体DNA则可以传给下一代,这就是所谓的母系遗传.当我们把目的基因导入叶绿体DNA中时,那么生物体所产生的花粉(内含精子)中就不会携带有叶绿体DNA,也就无法把目的基因传给下一代,这就是题目所说的"可以避免‘基因污染""。但应注意的是,这种说法并不科学,除非你导入目的基因的植株开的是单性花而且只有雄花,否则的话,植株产生的受精卵中也会携带有目的基因,那就可以传给下一代了。

叶绿体分裂需要核基因起作用吗?

叶绿体分裂需要核基因起作用。叶绿体(chloroplast):植物体中含有叶绿素等用来进行光合作用的细胞器。 主要含有叶绿素、胡萝卜素和叶黄素,其中叶绿素的含量最多,遮蔽了其他色素,所有呈现绿色。主要功能是进行光合作用。叶绿体chloroplast 存在于藻类和绿色植物中的色素体之一,光合作用的生化过程在其中进行。因为叶绿体除含黄色的胡萝卜素外,还含有大量的叶绿素,所以看上去是绿色的。褐藻和红藻的叶绿体除含叶绿素外还含有藻黄素和藻红蛋白,看上去是褐色或红色[有人分别称为褐色体(phacaplost)、红色体 rhodoplast]。许多植物的叶绿体是直径5微米左右,厚2—3微米的凸透镜形状,但低等植物中则含有板状、网眼状、螺旋形、星形、杯形等非常大的叶绿体。叶肉细胞中含的叶绿体数通常是数十到数百个。已知有的一个细胞含有数千个以上叶绿体的例子,以及仅有一个叶绿体的例子。用光学显微镜观察叶绿体,它的平面相多数为0.5微米大小的浓绿色粒状结构(基粒)。基粒的清晰程度和数量随植物和组织的种类及叶绿体的发育时期而不同,反映着内膜系统的分化程度。包着叶绿体的包膜由内外两层膜组成,对各种各样的离子以及种种物质具有选择透过性。在叶绿体内部有基质、富含脂质和质体醌的质体颗粒,以及结构精细的内膜系统(片层构造,内囊体)。在基质中水占叶绿体重量的60—80%,这里有各种各样的离子、低分子有机化合物、酶、蛋白质、核糖体、RNA、DNA等。在绿藻、褐藻,红藻、接合藻、硅藻等许多藻类的叶绿体中存在着淀粉核。构成内膜系统微细结构基础的是内囊体。在具有基粒的叶绿体中重叠起内囊体或复杂地折叠起来,分化成所谓的基粒堆(grana stack)和与之相联系的膜系统[基粒间片层(intergrana lamellae)]。各种光合色素和光合成电子传递成分、磷酸化偶联因子等存在于内囊体中,色素被光能激发、电子传递、直到ATP合成都在内囊体上及其表面附近进行。利用由此生成的NADPH和ATP在基质中进行二氧化碳固定。 几乎可以说一切生命活动所需的能量来源于太阳能(光能)。绿色植物是主要的能量转换者是因为它们均含有叶绿体(Chloroplast)这一完成能量转换的细胞器,它能利用光能同化二氧化碳和水,合成贮藏能量的有机物,同时产生氧。所以绿色植物的光合作用是地球上有机体生存、繁殖和发展的根本源泉。 古生物学家推断,叶绿体可能起源于古代蓝藻。某些古代真核生物靠吞噬其他生物维生,它们吞下的某些蓝藻没有被消化,反而依靠吞噬者的生活废物制造营养物质。在长期共生过程中,古代蓝藻形成叶绿体,植物也由此产生。一、形态与结构 在高等植物中叶绿体象双凸或平凸透镜,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。 在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。 叶绿体由叶绿体外被(chloroplast envelope)、类囊体(thylakoid)和基质(stroma)3部分组成,叶绿体含有3种不同的膜:外膜、内膜、类囊体膜和3种彼此分开的腔:膜间隙、基质和类囊体腔(一)外被 叶绿体外被由双层膜组成,膜间为10~20nm的膜间隙。外膜的渗透性大,如核苷、无机磷、蔗糖等许多细胞质中的营养分子可自由进入膜间隙。 内膜对通过物质的选择性很强,CO2、O2、Pi、H2O、磷酸甘油酸、丙糖磷酸,双羧酸和双羧酸氨基酸可以透过内膜,ADP、ATP已糖磷酸,葡萄糖及果糖等透过内膜较慢。蔗糖、C5糖双磷酸酯,C糖磷酸酯,NADP+及焦磷酸不能透过内膜,需要特殊的转运体(translator)才能通过内膜。(二)类囊体 是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,又称光合膜。 许多类囊体象圆盘一样叠在一起,称为基粒,组成基粒的类囊体,叫做基粒类囊体,构成内膜系统的基粒片层(grana lamella)。基粒直径约0.25~0.8μm,由10~100个类囊体组成。每个叶绿体中约有40~60个基粒。 贯穿在两个或两个以上基粒之间的没有发生垛叠的类囊体称为基质类囊体,它们形成了内膜系统的基质片层(stroma lamella)。 由于相邻基粒经网管状或扁平状基质类囊体相联结,全部类囊体实质上是一个相互贯通的封闭系统。类囊体做为单独一个封闭膜囊的原始概念已失去原来的意义,它所表示的仅仅是叶绿体切面的平面形态。 类囊体膜的主要成分是蛋白质和脂类(60:40),脂类中的脂肪酸主要是不饱和脂肪酸(约87%),具有较高的流动性。光能向化学能的转化是在类囊体上进行的,因此类囊体膜亦称光合膜,类囊体膜的内在蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统Ⅰ、光系统Ⅱ复合物等。(三)基质 是内膜与类囊体之间的空间,主要成分包括: 碳同化相关的酶类:如RuBP羧化酶占基质可溶性蛋白总量的60%。 叶绿体DNA、蛋白质合成体系:如,ctDNA、各类RNA、核糖体等。 一些颗粒成分:如淀粉粒、质体小球和植物铁蛋白等。二、光合作用机理 光合作用的是能量及物质的转化过程。首先光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。分为光反应(light reaction)和暗反应(dark reaction),前者需要光,涉及水的光解和光合磷酸化,后者不需要光,涉及CO2的固定。分为C3和C4两类。(一)光合色素和电子传递链组分1.光合色素 类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:l,全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。2.集光复合体(light harvesting complex) 由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。3.光系统Ⅱ(PSⅡ) 吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。4.细胞色素b6/f复合体(cyt b6/f complex) 可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。5.光系统Ⅰ(PSI) 能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。(二)光反应与电子传递 P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。 2H 2O→O2 + 4H+ + 4e- 在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin, PC)中的Cu2+,再将电子传递到光系统Ⅱ。 P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原 以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。(三)光合磷酸化 一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。 ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。(四)暗反应 C3途径(C3 pathway):亦称卡尔文 (Calvin)循环。CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA)。 C4途径(C4 pathway) :亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PEP,最初产物为草酰乙酸(OAA)。 景天科酸代谢途径(Crassulacean acid metabolism pathway,CAM途径):夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。三、叶绿体的半自主性 线粒体与叶绿体都是细胞内进行能量转换的场所,两者在结构上具有一定的相似性。①均由两层膜包被而成,且内外膜的性质、结构有显著的差异。②均为半自主性细胞器,具有自身的DNA和蛋白质合成体系。因此绿色植物的细胞内存在3个遗传系统。 叶绿体DNA由Ris和Plaut 1962最早发现于衣藻叶绿体。 ctDNA呈环状,长40~60μm,基因组的大小因植物而异,一般约200Kb-2500Kb。数目的多少植物的发育阶段有关,如菠菜幼苗叶肉细胞中,每个细胞含有20个叶绿体,每个叶绿体含DNA分子200个,但到接近成熟的叶肉细胞中有叶绿体150个,每个叶绿体含30个DNA分子。 和线粒体一样,叶绿体只能合成自身需要的部分蛋白质,其余的是在细胞质激离的核糖体上合成的,必需运送到叶绿体,才能发挥叶绿体应有的功能。已知由ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4.5S及5S),20种(烟草)或31种(地钱)tRNA,约90多种多肽。 由于叶绿体在形态、结构、化学组成、遗传体系等方面与蓝细菌相似,人们推测叶绿体可能也起源于内共生的方式,是寄生在细胞内的蓝藻演化而来的。四、叶绿体的增殖 在个体发育中叶绿体由原质体发育而来,原质体存在于根和芽的分生组织中,由双层被膜包围,含有DNA,一些小泡和淀粉颗粒的结构,但不含片层结构,小泡是由质体双层膜的内膜内折形成的。 在有光条件原质体的小泡数目增加并相互融合形成片层,多个片层平行排列成行,在某些区域增殖,形成基粒,变成绿色原质体发育成叶绿体。 在黑暗性长时,原质体小泡融合速度减慢,并转变为排列成网格的小管的三维晶格结构,称为原片层,这种质体称为黄色体。黄色体在有光的情况下原片层弥散形成类囊体,进一步发育出基粒,变为叶绿体。 叶绿体能靠分裂而增殖,这各分裂是靠中部缢缩而实现的,在发育7天的 幼叶的基部2-2.5cm处很容易看到幼龄叶绿体呈哑铃形状,从菠菜幼叶含叶绿体少,ctDNA多,老叶含叶绿体多,每个叶绿体含ctDNA少的现象也可以看出叶绿体是以分裂的方式增殖的。 成熟叶绿体正常情况下一般不再分裂或很少分裂。 高等植物的叶绿体主要存在于叶肉细胞内,含有叶绿素。电镜观察表明: 叶绿体外有光滑的双层单位膜,内膜向内叠成内囊体,若干内囊体垛叠成基粒。基粒内的某些内囊体内向外伸展,连接不同基粒。连接基粒的类囊体部分,称为基质片层;构成基粒的类囊体部分,称为基粒片层。 在个体发育上,叶绿体来自前质体,由前质体发育成叶绿体。 并且,无光不能形成叶绿素。

叶绿体中的DNA有无等位基因

没有。叶绿体中的DNA是不托附于染色体独立存在的,而等位基因是位于同源染色体上相同位置控制同一性状的不同表现类型的基因,也就是说,一条来自父方一条来自母方的染色体上相同位置的基因,通过显隐性来控制性状的基因。叶绿体中的DNA并没有在染色体上出现,更没有在同源染色体上成对出现,因此它是没有等位基因。

叶绿体DNA的叶绿体基因组 - 相关研究

植物叶绿体基因组基因表达调控的研究  叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。  转录水平调节。转录后调节与修饰。莱茵衣藻核基因组与叶绿体基因组遗传转化体系的建立,以及许多光合途径缺陷突变体的分离为研究转录后调节提供了一个非常有用的模式系统。遗传分析表明RNA加工和RNA编辑为影响叶绿体基因表达转录后调节的因素。翻译水平调节。翻译水平调节可使生物快速地适应外界环境条件,特别对于高效表达基因,当环境条件不利时,可通过翻译水平快速调节,从而减少代谢能源的消耗。RNA水平和细胞器代谢状态影响叶绿体蛋白的翻译, 这种调节可能是通过核糖体蛋白反式磷酸化来完成的。翻译后调节与修饰。对于质体编码的叶绿素。  在每个叶原基细胞增殖过程中,位置信息决定细胞命运,因而不同细胞如叶肉细胞、皮层细胞、保卫细胞中对叶绿体的发育进行微调,大多数是通过调节RNA稳定性、剪接、翻译以及蛋白质稳定性来实现的,并显示核基因可以控制那些核和质体共同编码的、最终装配为复合体的蛋白基因。当发育为叶片时,不同细胞类型的核基因表达有所不同,不同细胞的位置信息,通过不同的基因调节机制,引起质体和核基因的细胞特异表达。最后,叶片细胞以关掉编码叶绿体蛋白的基因和核基因表达而进入衰老阶段。  基因表达调控是由一系列复杂的调控机制组成的。不同的调节机制在一定条件下对特定基因起调节作用,不同的调节策略可使不同植物来适应各自的生存条件,如:光、温、水和营养条件可调节植物的代谢活动。除上面提到的环境因素外,还涉及叶绿体基因转录及转录后调节、翻译与翻译后修饰调节、核基因对叶绿体基因在转录与翻译过程中的调节和质体产生的信号对核编码的质体蛋白的表达调节等等。因此,很难对叶绿体基因表达找出一个固定模式。在未来的研究中,核基因组和质体基因组如何在质体发育过程中起到相互调节作用将会成为一个最可能出成果的研究领域。蓝藻和叶绿体基因组的比较研究  原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。  蓝藻基因组的作图和测序由日本Kazusa DNA研究所以S.Tabata博士领导的研究组,于1994年开始对集胞藻(Synechocystis sp. PCC6803)作分析,已于1996年完成。最近他们又基本完成了对鱼腥藻(Anabaena sp. PCC7120)的全序列测定。集胞藻6803的基因组大小为3,573,470bp,含有3168个编码蛋白的潜在基因,占全基因组87%。它的基因密度为1.1kb/基因,一个基因表达的产物平均长度为326个氨基酸残基,这些都是细菌基因组的典型数据。在3168个潜在基因中,1416个基因(45%)与已知的相似,尚有1752个基因(55%)需要鉴定。1416个已知基因中,按生物学功能可分成15类,其中与光合和呼吸有关的有131个,与转录有关的为24个,与翻译有关的144个。  把10种叶绿体的光合器蛋白和光合代谢中蛋白与蓝藻比较同一性发现,进化上差异越大,它们的同一性越差;在不同基因的同一性也有不同,如编码光合器的同一性较高,编码光合代谢的基因同一性差些。在编码光合器的蛋白中,光系统I和II反应中心的蛋白同一性较好。现在要做的是如何解释从蓝藻进化到叶绿体失去了绝大部分基因及为何在叶绿体进化中保留下来的蛋白在同一性上有这样的差异,从这些差异上能否得到启示来改造基因来提高光合作用效率。

线粒体和叶绿体中的环状dna上的基因如何表达?

线粒体和叶绿体中没有核糖体..合成蛋白质不一定要核糖体啊..线粒体内的DNA可以自主合成RNA 并以RNA为模板合成蛋白质如果说核糖体没有信使RNA作为模板 核糖体也是不能合成蛋白质的.线粒体DNA结构、复制及蛋白质合成在真核细胞中,作为重要遗传物质的DNA分子,过去一直被认为只存在于细胞核中,从而把细胞核看成是唯一的遗传控制中心。随着细胞生物学的发展,人们已经发现细胞质中某些重要细胞器,如线位体及叶绿体等也都含有自己特殊的DNA分子,并能依靠它所贮存的遗传信息进行独立的蛋白质合成,而成为一套核外遗传系统。目前,对线粒体的研究日趋深入,现仅就对线粒体DNA的认识作一简单介绍。一、线粒体DNA的发现1962—1963年首先是瑞斯(Ris)等用电子显微镜在藻类的线粒体和叶绿体中观察到了呈小细纤维状的DNA分子。接着纳斯(Nass)等又在鸡肝细胞的线粒体中也相继发现了DNA。它既可被DNA专一性染料(醋酸尿嘧啶)染色,又能被特异性DNA酶所消化。从而为DNA在线粒体中的存在,提供了令人信服的证据。此后,在各种低等或高等的动、植物细胞的线粒体中被普遍确认存在有DNA。特别是在胎儿的组织细胞、培养细胞、以及癌细胞等增殖旺盛的细胞线粒体中就更为多见。二、线粒体DNA的一般形态线粒体DNA是不与组蛋白结合的(相似于细菌染色体),如果将分离出来的线粒体用震荡方法进行破坏,这种裸露DNA便可以游离出来。首先是Luck等在红色面包霉的线粒体中将DNA成功的分离出来。后来又相继在鸡的胚胎,鼠、牛等心脏、肝脏等细胞的线粒体中分离出DNA。如果用蛋白质单分子膜法将分离出来的DNA分子在水面上扩展,同时用醋酸尿嘧啶染色在电子显微镜下观察,便可以看出几乎所有动物细胞的线粒体DNA,其大小均为5微米左右(原生动物和植物的线粒体DNA要长一些),分子量约为9.6×106道尔顿,是一种双链环状分子。在这些环状DNA分子当中,有的是呈闭链环状(Ⅰ型),也有的是开链环状(Ⅱ型)。显然,这种Ⅱ型开链环状分子是由于Ⅰ型闭链环状分子发生部分单链切断所形成的。如果其双链都发生这种切断的话,便可以形成线形DNA分子(Ⅲ型)(图1)。如果将这种环状DNA分子做热变性处理(水浴加热)则双链之间的氢键可被打开,各自成为单链的DNA分子而成凝聚状态,其S值(沉降系数)增大。但是其热变性熔点却比核DNA高(约90℃)。目前,有人用密度梯度离心法,已经成功地分离出来各种形态的线粒体环状DNA分子。其中可见,大部分是呈双链单环状的单体结构也有少部分是以两个单环状DNA分子连锁起来而形成的环状二聚体结构以及呈单环状的二聚体结构等等(图2)。三、线粒体DNA的核外遗传系统1.线粒体DNA的复制事实表明,被分离出来的线粒体,可以用自身的DNA为模板合成出新的DNA。这就说明线粒体DNA也具有自我复制的能力。并具有自己的DNA聚合酶。在电镜下所见到的线粒体DNA复制过程,基本上与细菌、病毒等复制方式相类似,也为半保留复制,并出现有叉型复制形分子。值得注意的是,线粒体DNA的复制周期与线粒体的增殖是平行进行的,但是线粒体DNA的复制过程与核DNA的复制过程不是平行进行的。一般认为,核DNA复制是发生在细胞周期的S期,而线粒体DNA复制是发生在细胞周期的G2期。并且,凡是分裂增殖快的细胞,几乎它的线粒体DNA合成也都十分旺盛。显然线粒体DNA的复制,能够保证线粒体本身DNA在生命过程中的连续性。2.线粒体RNA与线粒体核蛋白体利用电镜放射自显影技术,可以看到被分离出来的线粒体能够在体外,以自身DNA为模板独立的转录合成线粒体RNA。并具有为这种合成所必需的RNA聚合酶(分子量为64,000道尔顿的单一多肽)。线粒体RNA聚合酶是不同于核RNA聚合酶的,但与细菌等却极为相似。如用能使细菌RNA合成受到抑制作用的一定浓度的特异性抑制剂(利福平)做实验,可以看出线粒体中的RNA合成也同样会受到抑制。但是对细胞核中的RNA合成却没有抑制能力。最近,也有人报道,已经在线粒体中分离出来多聚核蛋白体。如酵母菌线粒体中的核蛋白体就是为74S的颗粒。一般认为动物细胞的线粒体核蛋白体比前者要小,约为55—60S被称为小核蛋白体。Attardi等人已从人的HeLa细胞的线粒体中成功的分离出来12SrRNA (小亚基rRNA)和16SrRNA(大亚基rRNA)以及4StRNA等。3.线粒体DNA的基因位点Attardi等还应用DNA-RNA分子杂交实验,并在电镜下观察已确认出某些与RNA碱基具有互补作用的线粒体DNA分子的基因位点。并初步绘制出了人的HeLa细胞线粒体DNA的基因图。目前已被公认在H链(重链)上分别有12S以及16S rRNA的基因位点和9个tRNA基因位点。在L链(轻链)上有3个tRNA基因位点。并且确定出它们的排列顺序。至于在它们的空隙区域内将有怎样的mRNA基因存在,尚在研究之中(图3)。4.线粒体的蛋白质合成某些特异性抑制剂的使用,可以用来鉴定线粒体中的蛋白质成分是由细胞质内合成的,还是由线粒体本身所合成。比如,氯霉素等某些抗生素只能特异性的抑制细菌以及线粒体内蛋白质的合成,而对真核细胞细胞质内的蛋白质合成却没有影响作用。利用这种特异性实验,可以证明线粒体内的部分蛋白质成分是在线粒体本身的DNA支配下所合成的。如:用于构成线粒体内膜的电子传递系,及氧化磷酸化系机构有关的蛋白质,ATP酶(ATPase)的四种内源性蛋白质亚基、细胞色素氧化酶的三种亚基、以及细胞色素b+c1的亚基等等。至于构成线粒体结构的其它部分蛋白质成分,看来还要依靠核DNA蛋白质合成系统所合成。这就是说,构成线粒体结构的蛋白质成分,除靠自己合成外,还需要有核DNA蛋白质合成系统的协助。另外某些实验还推测,线粒体DNA的基因活性,不仅能够转译合成部分蛋白质,它还可以通过合成出某种阻遏性蛋白质,在一定程度上能控制(或阻遏)核DNA基因的转录活性的表达。从以上这些事实,不难得出如下结论:1.线粒体由于含有自己的DNA等并能进行自我复制和转录、合成蛋白质而成为一套完整的核外遗传系统。2.线粒体的结构物质,除部分可以自身合成外,同时又要依靠核DNA遗传系统的输入,是一种半独立性的细胞器。3.真核细胞内所具有的两种遗传体系是处于互相影响、互相依存的复杂矛盾状态之中,核DNA遗传系统看来是居于主导地位。http://nczxh.bokee.com/6084293.html三、叶绿体的半自主性线粒体与叶绿体都是细胞内进行能量转换的场所,两者在结构上具有一定的相似性。①均由两层膜包被而成,且内外膜的性质、结构有显著的差异。②均为半自主性细胞器,具有自身的DNA和蛋白质合成体系。因此绿色植物的细胞内存在3个遗传系统。叶绿体DNA由Ris和Plaut 1962最早发现于衣藻叶绿体。ctDNA呈环状,长40~60μm,基因组的大小因植物而异,一般约200Kb-2500Kb。数目的多少植物的发育阶段有关,如菠菜幼苗叶肉细胞中,每个细胞含有20个叶绿体,每个叶绿体含DNA分子200个,但到接近成熟的叶肉细胞中有叶绿体150个,每个叶绿体含30个DNA分子。和线粒体一样,叶绿体只能合成自身需要的部分蛋白质,其余的是在细胞质激离的核糖体上合成的,必需运送到叶绿体,才能发挥叶绿体应有的功能。已知由ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4.5S及5S),20种(烟草)或31种(地钱)tRNA,约90多种多肽。由于叶绿体在形态、结构、化学组成、遗传体系等方面与蓝细菌相似,人们推测叶绿体可能也起源于内共生的方式,是寄生在细胞内的蓝藻演化而来的。四、叶绿体的增殖在个体发育中叶绿体由原质体发育而来,原质体存在于根和芽的分生组织中,由双层被膜包围,含有DNA,一些小泡和淀粉颗粒的结构,但不含片层结构,小泡是由质体双层膜的内膜内折形成的。在有光条件原质体的小泡数目增加并相互融合形成片层,多个片层平行排列成行,在某些区域增殖,形成基粒,变成绿色原质体发育成叶绿体。在黑暗性长时,原质体小泡融合速度减慢,并转变为排列成网格的小管的三维晶格结构,称为原片层,这种质体称为黄色体。黄色体在有光的情况下原片层弥散形成类囊体,进一步发育出基粒,变为叶绿体。叶绿体能靠分裂而增殖,这各分裂是靠中部缢缩而实现的,在发育7天的 幼叶的基部2-2.5cm处很容易看到幼龄叶绿体呈哑铃形状,从菠菜幼叶含叶绿体少,ctDNA多,老叶含叶绿体多,每个叶绿体含ctDNA少的现象也可以看出叶绿体是以分裂的方式增殖的。成熟叶绿体正常情况下一般不再分裂或很少分裂。高等植物的叶绿体主要存在于叶肉细胞内,含有叶绿素。电镜观察表明: 叶绿体外有光滑的双层单位膜,内膜向内叠成内囊体,若干内囊体垛叠成基粒。基粒内的某些内囊体内向外伸展,连接不同基粒。连接基粒的类囊体部分,称为基质片层;构成基粒的类囊体部分,称为基粒片层。在个体发育上,叶绿体来自前质体,由前质体发育成叶绿体。 http://baike.baidu.com/view/28826.htm

转染microrna mimics之后靶基因mrna会降低吗

转染microrna mimics之后靶基因mrna会降低microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。microRNAs的作用机制miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。miRNA的表达调控机制①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

同一microrna在不同细胞中对同一基因会不会起不同调控作用

同一microrna在不同细胞中对同一基因会不会起不同调控作用microRNAs(miRNA)是一种大小约21-23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链),但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNA)参与调控基因表达,但其机制区别于siRNA接到的mRNA降解。第一个被确认的miRNA是在线虫中发现的lin-4和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNA。miRNA有高等生物基因组编码,通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。其在物种进化总相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程的调节过程中其多种作用。microRNAs的作用机制miRNA是一类多细胞动物或植物基因组的前体mRNA内含子,miRNA独立转录单位或miRNA基因簇编码的19-25个核苷酸大小的内源性单链RNA,他们在转录后水平沉默特定基因从而对生物体基因表达起到精细调节的作用[1]。绝大多数miRNA基因在RNA聚合酶Ⅱ的作用下形成较长的茎环结构,称为初级miRNA(primary miRNA ,pri- miRNA)。pri- miRNA在Drosha-DGCR8复合体的作用下形成长度约60-70个核苷酸的发夹状RNA,成为前体miRNA(precursor miRNA,pre-miRNA)。随后,pre- miRNA在Exprotin-5复合物[2]的作用下被转运出胞核,在胞浆中由Dicer剪切成为miRNA复合体, miRNA复合物(RNA-induced silencing comlex,RISC)[1]与该miRNA的3"翻译区(3"UTR)结合到位于胞浆的P-body(processing bady)中[3]:如果miRNA与靶mRNA匹配完全,则该复合体降解mRNA;若两者序列部分匹配,尤其是miRNA的5"端2-8个被称为种子序列(seed sequence)的核苷酸与靶mRNA匹配完好,则通过抑制靶mRNA的翻译来沉默特定基因。此外,某些miRNA,如miRNA-16能够特异结合于某些基因3"UTA的富含AU元件(AU rich element,ARE),指导Ago等组成RISC区的蛋白与TTP结合,从而改变相应mRNA的半衰期,加速靶mRNA的降解。此外,miRNA也可能抑制5"UTR含有内部核糖体进入位点(intrnal ribosome entry sites,IRESs)的靶标分子[4]。miRNA的表达调控机制①顺时调控元件 大多数miRNA基因的核心启动子区域含有TA盒,并且含有影响miRNA表达的细胞特异转录调节元件。miRNAs作为转录因子重要的靶分子在细胞功能调控中发挥核心作用。②表观遗传学 最近一些研究提示,表观遗传学变化会影响miRNA 基因,从而调节miRNA表达。分析基于miRNAse(release 8.0)数据库的332个人miRNA基因序列时,发现其中155个miRNA的基因序列上游或下游2000bp处含有CG岛在miR-127[6],miR-24a[6],let-7a-3[7]和miR-370[8]基因中,均含有CpG岛,并且在相应地肿瘤组织中呈现高度甲基化,这些miRNA在肿瘤中的甲基化沉默将导致他们的靶基因-原癌基因(BCL6,CDK6和MAP3K8等)的表达,从而促进肿瘤发育。转录因子PRDM5可能参与了调解miRNAs基因的表观遗传学变化。在HEK293细胞中,PRDM5可以募集蛋白甲基化转移酶G9a和一类组蛋白去乙酰基酶等组蛋白修饰到has-mir-135b基因的启动子区域,行使抑制功能[9],miRNA在癌症细胞中的表达一般低于正常组织细胞,这表明多数miRNAs可能作为肿瘤抑制因子而发挥作用。原癌基因的低度甲基化和肿瘤抑制基因的高度甲基化被认为是癌症表观遗传学的主要决定因素。miRNAs基因在肿瘤中的异常甲基化使表观遗传学调控癌症机理更加复杂。③单核苷酸多态性 存在于pri-mRNAs,pri-mRNA或成熟miRNAs基因序列中的单核苷酸多态性(single nucleotide polymorphism,SNP)能够潜在地影响miRNA调节的细胞功能网络。miRNA基因或靶结合位点及其临近靶位点区域的多态变化时,于miRNA的生物合成及靶位点选择和抑制效应据重要的意义。④RNA编辑 (RNA editing)是基因在初级转录物上增删或取代某些核苷酸而改变遗传信息的过程,从而可调节基因的表达。RNA编辑在miRNA调控基因默过程中其重要作用,不仅影响miRNA表达,而且影响特异miRNA的靶向分子的调控。此外,At编辑也有可能存在于靶分子的种子互补区域。

siRNA为什么是一种高效特异的基因缺失性研究工具?

Small interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。RNA干涉(RNAinterference,RNAi)是指内源性或外源性双链RNA(dsRNA)介导的细胞内mRNA发生特异性降解,从而导致靶基因的表达沉默,产生相应的功能表型缺失的现象.RNA干涉(RNAi)在实验室中是一种强大的实验工具,利用具有同源性的双链RNA(dsRNA)诱导序列特异的目标基因的沉寂,迅速阻断基因活性。siRNA在RNA沉默通路中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素。siRNA是RNAi途径中的中间产物,是RNAi发挥效应所必需的因子。siRNA的形成主要由Dicer和Rde-1调控完成。由于RNA 病毒入侵、转座子转录、基因组中反向重复序列转录等原因,细胞中出现了dsRNA,Rde-1(RNAi缺陷基因-1)编码的蛋白质识别外源dsRNA,当dsRNA达到一定量的时候,Rde-1引导dsRNA与Rde-1编码的Dicer(Dicer是一种RNaseIII 活性核酸内切酶,具有四个结构域:Argonaute家族的PAZ结构域,III型RNA酶活性区域,dsRNA结合区域以及DEAH/DEXHRNA解旋酶活性区)结合,形成酶-dsRNA复合体。Dicer 切割后形成siRNA,然后,在ATP的参与下,细胞中存在的一种RNA诱导的沉默复合体RNA-induced silencing complex RNAi干涉的关键步骤是组装RISC和合成介导特异性反应的siRNA蛋白。siRNA并入RISC中,然后与靶标基因编码区或UTR区完全配对,降解靶标基因,因此说siRNA只降解与其序列互补配对的mRNA。其调控的机制是通过互补配对而沉默相应靶位基因的表达,所以是一种典型的负调控机制。siRNA识别靶序列是有高度特异性的,因为降解首先在相对于siRNA来说的中央位置发生,所以这些中央的碱基位点就显得极为重要,一旦发生错配就会严重抑制RNAi的效应。RNAi在基因沉默(silent gene)方面具有高效性和简单性,所以是基因功能研究的重要工具。大多数药物属于标靶基因(或疾病基因)的抑制剂,因此RNAi 模拟了药物的作用,这功能丢失(LOF)的研究方法比传统的功能获得(GOF)方法更具优势。因此, RNAi 在今天的制药产业中是药物靶标确认的一个重要工具。同时,那些在靶标实验中证明有效的siRNA/shRNA本身还可以被进一步开发成为RNAi药物。在药物标靶发现和确认方面,RNAi技术已获得了广泛的应用。生物技术公司或制药公司通常利用建立好的RNAi文库来引入细胞,然后通过观察细胞的表型变化来发现具有功能的基因。如可通过RNAi文库介导的肿瘤细胞生长来发现能抑制肿瘤的基因。一旦所发现的基因属于可用药的靶标(如表达的蛋白在细胞膜上或被分泌出细胞外),就可以针对此靶标进行大规模的药物筛选。此外,被发现的靶标还可用RNAi技术在细胞水平或动物体内进一步确认。在疾病治疗方面,双链小分子RNA或siRNA已被用于临床测试用于几种疾病治疗,如老年视黄斑退化、肌肉萎缩性侧索硬化症、类风湿性关节炎、肥胖症等。在抗病毒治疗方面,帕金森病等神经系统疾病已经开始初步采用RNA干扰疗法。肿瘤治疗方面也已经取得了一些成果。

怎么在NCBI上查到11-β HSD1的mRNA序列,怎么设计siRNA来做RNA干扰沉默该基因呢?

很基础的问题啊,在NCBI上search:gene,下面的对话框输入你要找的基因的名称,会出来相关的基因序列,看你要找什么物种的,一般是人和鼠的,如人的后缀是Homo sapiens,鼠的是Mus musculus。点击你要的序列号,会进入这个基因的基本信息,一直往下拉会看到mRNA and Protein(s) ,NM开头的序列号就是其CDNA的序列了。关于SiRNA,需要去网站搜索,如invitrogen,promega,等大型生物网站都有相关的tools给你设计,很方便!http://jura.wi.mit.edu/bioc/siRNAext/siRNA_search.cgi?tasto=10925811,你去试试吧

pcDNA3.1(+)-靶基因-SiRNA是什么啊?

pcDNA3.1(+)是哺乳动物细胞表达载体,siRNA是用于RNA干扰的一段长约21-25nt并且和靶基因mRNA的某段序列互补的序列,用于在转录后水平上沉默基因。所以这个“pcDNA3.1(+)-靶基因-siRNA”很可能是一个用于gene knockdown的质粒。

第3周:利用大豆小RNA图谱鉴定来自编码基因区的phasiRNA

理解为产生phasiRNA的PHAS位点与编码蛋白的基因区有重叠可能更准确。 侵删 u2003u2003小RNA是一类普遍存在的,多功能的抑制物,包括(1)microRNA(miRNA),由mRNA形成的茎环结构加工而成; (2)小干扰RNA(siRNA),在植物中通常由需要依赖RNA的 RNA聚合酶的过程衍生。我们构建并分析了大豆小RNA的表达图谱,鉴定了超过500个产生21个核苷酸的phased siRNAs(phasiRNA;来自PHAS位点)的位点,其中483个与注释的蛋白质编码基因有重叠。 通过整合miRNA与RNA end(PARE)数据的分析,检测到127个PHAS位点上的20个miRNA靶标 。 PHAS位点的主要类别(208,占41%)与NB-LRR基因相对应;这些小RNA中的一部分优先在根瘤中积累。在PHAS位点中,还观察到TAS3的新代表和非经典相位模式。由miR4392触发的非编码PHAS位点优先在花药中积累;预测phasiRNA靶向转座因子,在大豆生殖发育中具有峰值丰度。因此,phasiRNA在双子叶植物中显示出巨大的多样性。我们鉴定了新的miRNA并评估了miRBase中记录的大豆miRNA的准确性,显着改善了大豆miRNA注释,促进了miRBase注释的改进并鉴定了高严谨性的新miRNA及其靶标。 文章做了些什么: u2003u2003 小非编码RNA在发育,细胞分化,适应生物和非生物胁迫以及基因组稳定性方面具有重要作用。 小RNA的主要活性是通过靶标降解,翻译抑制或通过指导染色质修饰来对特定mRNA或基因表达模式进行负调控。迄今已鉴定出几种不同类型的小RNA。在植物中,研究最多的小RNA是microRNA(miRNA)和小干扰RNA(siRNA);这些是由不同的前体和不同的途径产生的。 通常长度为21至22个核苷酸的miRNA 衍生自通过RNA聚合酶II从MIRNA基因转录的长非编码RNA前体。miRNA前体形成由DICER-LIKE1(DCL1)或其他DCL酶(极少数)加工的茎环结构,产生3"具有两个核苷酸突出的单个小RNA双链体(miRNA / miRNA *)。小RNA双链体的一条链是成熟miRNA,被称为引导链,它会结合到Argonaute(AGO)蛋白上以形成效应复合物(所谓的用于RNA诱导的沉默复合物——RISC),其指导miRNA靶标降解或翻译抑制。双链体的另一条链,即miRNA *或passenger strand,迅速降解,通常不会积累。 siRNA通常来自完全互补的长双链RNA(dsRNA)前体,这些前体一般由RNA依赖性的RNA聚合酶(RDR)形成,也可能由退火了的正义/反义转录物形成。已经在植物中定义了几类siRNA,主要类别是异染色质siRNA,它在胞嘧啶甲基化和抑制性组蛋白修饰的建立和维持中起关键作用。 siRNA还能够作为移动信号起作用,通过siRNA的运动使沉默效应从细胞扩散到其它细胞或更长距离。 u2003u2003科学家已经鉴定了一类相当有趣的siRNA,它们是长双链RNA前体以21个核苷酸为增量来逐步裂解的产物,产生定相的或完全间隔排列的小RNA。这些siRNA,即所谓的相位排列siRNA(phasiRNA),由特定的引导miRNA切割而产生,遵循单击或双击模式,分别对应一个22nt或两个21nt的miRNA的靶位点。切割的未加帽的mRNA产物用作RDR6的底物,产生dsRNA前体,然后被DCL4切割以产生21-核苷酸的定相siRNA。 一些定相siRNA已经显示在靶基因的反式调节中起作用;因此,这类siRNA最初被称为tasiRNA,但是更多的基因位点产生具有未知反式作用的相同相位模式(PHAS基因座)的siRNA,因此一般用“phasiRNA”进行描述。 tasiRNA通过对互补靶位点进行切割来调节mRNA,这如同许多植物miRNA一样。 最着名的tasiRNA是由TRANS-ACTING SIRNA GENE3(TAS3)产生的反式小干扰RNA-生长素响应因子(tasiARF)的集合。tasiARF在抑制生长素响应因子基因(ARF2,ARF3 / ETTIN和ARF4)中起作用 。已经在许多植物物种中鉴定出许多phasiRNA,包括拟南芥,水稻(Oryza sativa)和葡萄(Vitis vinifera)。已知PHAS基因座的数量在物种之间差异很大,从野生稻(Oryza rufipogon)中的800多个到拟南芥中的不到30个。在豆科植物中,分别在Medicago truncatula和大豆(Glycine max)中鉴定出114和41个PHAS基因座。 u2003u2003大豆在经济上是世界上最重要的豆类,它是蛋白质和食用油的主要来源之一。大豆的基因组序列现在可公开获得。基因组序列与下一代测序技术产生的数据一起,使得能够在全基因组范围内鉴定和定量小RNA。迄今为止,已在大豆中鉴定出数百种miRNA。然而,许多新注释的miRNA及其靶标尚未得到很好的验证,甚至注释的miRNA也经常在更强大的实验数据后进行校正。PHAS基因座比miRNA的注释更差。与Medicago truncatula相比,在大豆中鉴定出的PHAS位点要少得多。凭借广泛的小RNA数据和更高的测序深度,可以发现更多的PHAS。在这项研究中,我们分析了从不同组织中创建的大量小RNA文库,以构建小RNA的表达图谱并全面鉴定大豆中的PHAS基因座。 我们证明大豆中的许多蛋白质编码基因是PHAS基因座。 除了先前被鉴定为豆科植物PHAS基因座的NB-LRR之外,我们发现了数百种其他产生phasiRNA的蛋白质编码基因。 我们整合了RNA末端(PARE)数据的并行分析,以确定这些PHAS基因座的miRNA触发因子。 从这些数据中,我们验证了在miRBase(版本20)中记录的大豆miRNA并且鉴定了新的miRNA,证明了许多先前报道的miRNA具有siRNA的特征。基于表达分析,我们证明了phasiRNA以及已知和新发现的miRNA在不同组织和不同处理下的特异性表达。 总结 重点是流程图和过滤条件 探究了不同组织(或组织组合)中的miRNA富集差异。 图1.新的和组织优先miRNA的表达谱。 (A)在该研究中鉴定的新miRNA包括许多在特定组织或器官中差异富集的miRNA。 (B)对先前描述的大豆miRNA的分析还揭示了花,叶和根瘤中一系列的组织bias。 图2.编码蛋白质的PHAS基因。 比起其他研究过的植物基因组,大豆基因组含有更多的编码蛋白质的产生phasiRNA的基因座。 (A)编码PHAS基因座的类别和数量。 (B)NB-LRR家族中PHAS基因的表达谱和层次聚类。 (C)大豆基因组中phasi-NB-LRR基因的分布和聚类。 图3.大豆TAS3 TasiRNA的触发物和加工机制。 (A)来自大豆基因组中存在的六个TAS3基因座中的tasiRNA的总和在花,叶,根瘤和种子组织中的富集模式。 TAS3a和TAS3b是相同的,因此不能单独测量。 (B)源自TAS3a / b / c / d / e / f的TasiARF。所有TAS3 598D(+)和597D(+)siRNA的验证目标均在生长素响应因子(ARF)家族中,与其相对良好的保守序列一致(数据未显示)。 (C)在大豆TAS3基因座处存在两个或三个miR390靶位点,并且相对于这些靶位点的定相方向表明在TAS3e和TAS3f处由21个核苷酸的miRNA触发的siRNA的非典型加工方向。 图4.由TasiARF触发的ARF3 PHAS-Locus。 (A)大豆TAS3衍生的tasiARF在两个相同的位点靶向ARF3,通过PARE验证切割的59位点(下图)和未观察到切割的39位点。这种双击的tasiARF活性产生了定相siRNA(中图)。 y轴是phasing “score”,其是定相显著性的估计P值( 参见方法 )。 较低的两个图像是我们的Web浏览器,显示小RNA(中间)或PARE数据(下部),橙色虚线表示tasiARF切割位点。有色斑点是在y轴上显示丰度的小RNA ;浅蓝色斑点表示21个核苷酸的sRNA,绿色表示22个核苷酸的sRNA,橙色表示24个核苷酸的sRNA,其他颜色对应其他sRNA大小。红色框是带注释的外显子(粉红色是非翻译区域)。紫色线表示重复区的k-mer频数。 (B)来自图A的数据表明two-hit的phasiRNA生物发生的级联反应,其中21个核苷酸(nt)miR390触发21个核苷酸的tasiARF生物发生,并且通过two-hit机制,tasiARF触发来自ARF3和ARF4的额外二级siRNA的生成(参见补充图7在线)。 ARF siRNA可以顺式或反式起作用。 图5.源自Arogenate脱氢酶基因座的花药中高度富集的PhasiRNA。 (A)涉及雄激素脱氢酶的生化途径。 (B)来自雄激素脱氢酶相关基因座的phasiRNA产生的示意过程。在左侧,将形成发夹的基因片段加工成phasiRNA。 (C)来自不同组织中的两种arogenate dehydrogenase PHAS基因的miRNA触发物和phasiRNA的reads丰度水平(红色条)和基因表达水平(绿色条),其被标准化为RP5M和RP25M。 如何确定有没有匹配到tRNA,rRNA,snRNA和snoRNA? 降解组测序: http://www.ebiotrade.com/custom/LC_BIO/100427/index.htm

如何在rnai细胞中过表达另一个基因

RNA干扰的分子抑制机制的三种方式及原理转录抑制 与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。转录后抑制不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。翻译抑制 Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

蛋白质抑制基因表达,luciferase结果是什么样

蛋白质抑制基因表达,luciferase结果是什么样RNA干扰的分子抑制机制的三种方式及原理转录抑制 与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。转录后抑制不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。翻译抑制 Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

rna干扰为什么不能完全抑制基因的表达

RNA干扰的分子抑制机制的三种方式及原理转录抑制与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptionalgenesilencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。转录后抑制不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Posttranscriptionalgenesilencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。翻译抑制Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(smalltemporalRNA)。ssRNA的形成是因为当RNA的大小为70~80nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

RNAi和基因沉默——历史和展望:

写作素材翻译整理收集 May 20, 2002 转录后基因沉默(PTGS)最初被认为是一种仅限于矮牵牛和其他几种植物的奇异现象,现在已成为分子生物学中最热门的话题之一。 近几年已经清楚的是,PTGS在植物和动物中都存在,并且在病毒防御和转座子沉默机制中起作用。 然而,也许最令人兴奋的是PTGS的新兴应用,尤其是RNA干扰(RNAi)——通过引入双链RNA(dsRNA)引发的PTGS-作为敲除多种特定基因表达的工具生物。 RNAi是如何发现的?它是如何工作的?也许更重要的是,如何将其用于功能基因组学实验?本文将简要回答这些问题,并为您提供有关PTGS和RNAi研究的深入信息。 发现一个奇怪的现象:植物共抑制和PTGS 十多年前,在矮牵牛中进行了令人惊讶的观察。在尝试加深这些花的紫色时,Rich Jorgensen及其同事在强大的启动子控制下引入了色素生成基因。与其预期的深紫色不同,许多花朵似乎杂色甚至是白色。乔根森称观察到的现象为“共抑制/cosuppression”,因为导入基因和同源内源基因的表达均被抑制。 最初被认为是矮牵牛的怪癖,后来发现共抑制在许多植物物种中都发生。还已经在真菌中观察到了它,并且在克雷索氏菌中被特别好地表征,在那儿它被称为“抑制/quelling”。 但是什么原因导致这种基因沉默呢?尽管在某些植物中转基因诱导的沉默似乎涉及基因特异性甲基化(转录基因沉默或TGS),但在另一些植物中,沉默发生在转录后水平(转录后基因沉默或PTGS)。在后一种情况下的核运行实验表明,产生了同源转录本,但是它在细胞质中迅速降解并且没有积累。 转基因的引入可以触发PTGS,但是也可以通过引入某些病毒来诱导沉默。触发后,PTGS由可扩散的反式作用分子介导。这首先在Neurospora中得到证实,当时Cogoni及其同事证明了基因沉默可以在异核生物株的核之间转移。后来在Palauqui及其同事通过将沉默的,含转基因的来源植物嫁接到未沉默的宿主中而在宿主植物中诱导PTGS时在植物中得到证实。从线虫和苍蝇的工作中,我们现在知道负责植物中PTGS的反式作用因子是dsRNA。 dsRNA基因沉默:RNA干扰 RNAi在线虫中被发现 dsRNA可能导致基因沉默的第一个证据来自线虫秀丽隐杆线虫的工作。七年前,研究人员Guo和Kemphues试图使用反义RNA来关闭par-1基因的表达,以评估其功能。正如预期的那样,反义RNA的注入破坏了par-1的表达,但令人困惑的是,正义链控制的注入也确实如此。 直到三年后,这个结果还是一个谜。然后,Fire和Mello首先将dsRNA(正义链和反义链的混合物)注入到秀丽隐杆线虫中。与仅注射有义或反义链相比,这种注射导致沉默效率更高。实际上,每个细胞仅注射几个分子的dsRNA就足以完全沉默同源基因的表达。此外,将dsRNA注入蠕虫的肠道不仅导致整个蠕虫的基因沉默,而且还导致其第一代后代的基因沉默。 RNAi的效力激发了Fire和Timmons尝试喂养线虫细菌,这种细菌经过改造后可以表达与秀丽隐杆线虫unc-22基因同源的dsRNA。令人惊讶的是,这些蠕虫形成了unc-22 null-like表型。进一步的研究表明,将蠕虫浸入dsRNA中也能够诱导沉默。这些策略使大量线虫暴露于dsRNA,从而使大规模筛选能够选择RNAi缺陷的秀丽隐杆线虫突变体,并导致对该生物体内的大量基因敲除研究。 果蝇中的RNAi 在果蝇中也观察到了RNAi。尽管将酵母工程化以产生dsRNA然后喂给果蝇的策略无法奏效,但用dsRNA显微注射果蝇胚胎确实会产生沉默(2)。也可以通过用“基因枪”将dsRNA“射击”到果蝇胚胎中,或通过工程蝇携带带有待沉默基因的反向重复序列的DNA来诱导沉默。在过去的几年中,这些RNAi策略已被用作果蝇生物,胚胎裂解液和细胞中的逆向遗传学工具,以表征各种功能丧失的表型。 RNAi的生化机制 那么注射dsRNA如何导致基因沉默呢?在过去的几年中,许多研究小组都在努力地回答这一重要问题。鲍尔科姆和汉密尔顿的一项重要发现提供了第一个线索。他们鉴定出在非沉默植物中共抑制的植物中约25个核苷酸的RNA。这些RNA与被沉默基因的有义和反义链都是互补的。 在果蝇中的进一步工作-使用胚胎裂解液和源自S2细胞的体外系统-为受试者提供了更多的信息。在一系列值得注意的实验中,Zamore及其同事发现,添加到果蝇胚胎裂解物中的dsRNA被加工成21-23个核苷酸。他们还发现,同源内源性mRNA仅在与导入的dsRNA相对应的区域被切割,并且切割以21-23个核苷酸的间隔发生。迅速地,RNAi的机制变得清晰起来。 RNAi机制的当前模型 生化和遗传方法(请参阅下面的“ PTGS和RNAi涉及的基因和酶”中有关用于理解RNAi的遗传方法的讨论)都形成了RNAi机制的当前模型。在这些模型中,RNAi包括启动步骤和效应器步骤(另请参见参考文献3的Flash动画“ RNAi如何工作?”)。 在起始步骤中,将输入的dsRNA消化成21-23个核苷酸的小干扰RNA(siRNA),也称为“引导RNA”。有证据表明,dscer酶是dsRNA特异性核糖核酸酶RNase III家族的一员,Dicer酶以ATP依赖性,加工方式连续切割dsRNA(直接或通过转基因或病毒引入)。连续的切割事件将RNA降解为19-21 bp的双链体(siRNA),每个双链体都带有2个核苷酸的3"突出端。 在效应子步骤中,siRNA双链体与核酸酶复合物结合形成所谓的RNA诱导的沉默复合物或RISC。激活RISC时,需要依赖ATP的siRNA双链体展开。然后,活性RISC通过碱基配对相互作用靶向同源转录本,并从siRNA的3"末端切割u301c12个核苷酸的mRNA。尽管目前尚不清楚切割的机理,但研究表明,每个RISC都包含单个siRNA和一个与Dicer不同的RNase。 由于RNAi在某些生物体中的显着效力,因此还提出了RNAi途径内的扩增步骤。扩增可通过复制输入的dsRNA(可产生更多的siRNA)或通过siRNA自身的复制来进行(请参见下面的“ RNA依赖性RNA聚合酶的可能作用”)。替代地或另外,可以通过RISC的多个周转事件来实现扩增。 PTGS和RNAi涉及的基因和酶 RNA依赖的RNA聚合酶的可能作用 Neurospora,秀丽隐杆线虫和拟南芥的遗传筛选已鉴定出一些基因,这些基因似乎对PTGS和RNAi至关重要。其中一些,包括Neurospora qde-1,拟南芥SDE-1 / SGS-2和秀丽隐杆线虫ego-1,似乎编码RNA依赖性RNA聚合酶(RdRPs)。乍一看,可以假设这证明RNAi需要RdRP活性。如果RdRP在切割前直接扩增dsRNA或直接扩增siRNA,RdRP的存在当然可以解释dsRNA诱导的沉默的显着效率。但是这些基因的突变体具有不同的表型,这使得RdRP在RNAi中的作用难以辨别。 在秀丽隐杆线虫ego-1突变体(“ ego”代表“ glp-1增强剂”)中,RNAi在体细胞中正常运行,但在主要表达ego-1的种系细胞中有缺陷。在拟南芥SDE-1 / SGS-2突变体中(“ SGS”代表基因沉默的抑制物),当通过内源复制的RNA病毒引入dsRNA时,会产生siRNA,而通过转基因引入时则不会产生siRNA。已经提出在这些突变体中病毒RdRP可能替代了拟南芥酶。尽管在果蝇或人类中均未发现RdRP的同源物,但最近在果蝇胚胎裂解液中报道了RdRP的活性。一种称为“随机降解PCR”模型的扩增模型表明,RdRP使用siRNA的导链作为目标mRNA的引物,从而为Dicer生成了dsRNA底物,从而产生了更多的siRNA。在蠕虫中发现了支持该模型的证据,而从果蝇胚胎裂解物中获得了反驳该模型的实验结果。 RNAi引发剂 两种秀丽隐杆线虫基因rde-1和rde-4(“ rde”代表“ RNAi缺陷”)被认为与RNAi的起始步骤有关。这些基因的突变体产生的动物通过注射dsRNA可以抵抗沉默,但是沉默可以通过从没有沉默缺陷的杂合子亲本中传递siRNA来实现。秀丽隐杆线虫的rde-1基因是一个大家族基因的成员,与Neurospora qde-2(“ qde”代表“抑制缺乏”)和拟南芥AGO1基因(“ AGO”代表“ argonaute”)同源。 ”;以前已确定AGO1与拟南芥的发育有关。尽管这些基因在PTGS中的功能尚不清楚,但已将RDE-1家族的哺乳动物成员鉴定为翻译起始因子。有趣的是,对共抑制有缺陷的AGO1拟南芥突变体在叶片发育中也表现出缺陷。因此,PTGS中涉及的某些过程或酶也可能参与发育。 RNAi效应子 PTGS的效应子步骤的重要基因包括秀丽隐杆线虫rde-2和mut-7基因。这些基因最初是从不能将RNAi传递给其纯合后代的杂合突变蠕虫中鉴定出来的。带有突变的rde-2或mut-7基因的蠕虫表现出有缺陷的RNAi,但是有趣的是,它们还证明了转座子活性水平的提高。因此,转座子的沉默似乎是通过与RNAi和PTGS相关的机制发生的。尽管尚未鉴定出rde-2基因产物,但mut-7基因编码的蛋白与RNase D的核酸酶结构域具有同源性,并且与人的Werner综合征(一种快速衰老疾病)有关(。也许这种蛋白质是目标RNA降解所需的核酸酶活性的候选者。 PTGS具有悠久的历史 遗传和生物化学方法的发现都表明PTGS具有深厚的进化根源。有人提出,PTGS可能是抵御转座子或RNA病毒的防御机制,也许是在动植物分化之前发展的。 有趣的是,许多研究人员指出,RNAi所需基因的破坏通常会导致严重的发育缺陷。该观察结果提示RNAi与至少一个发育途径之间存在联系。 一组称为小时序RNA(stRNA)的小RNA分子通过翻译靶标转录物来调控秀丽隐杆线虫的发育时间。研究表明,将秀丽隐杆线虫lin-4和let-7 stRNA从这些较长的转录本折叠成茎环结构后,由70个核苷酸的转录本生成。折叠的RNA分子被切酶切割(产生秀丽隐杆线虫中的DCR-1),以产生22 nt stRNA。因此,Dicer既生成siRNA,也生成stRNA,并代表RNAi和stRNA途径的交点。 最近,在果蝇,秀丽隐杆线虫和HeLa细胞中发现了近100个另外的u301c22 nt RNA分子,称为microRNA(miRNA)。这些miRNA与lin-4和let-7非常相似,它们是由折叠成茎环二级结构的前体RNA分子形成的。据信,新发现的约22 nt的miRNA在调节基因表达中起作用,并且已知其中至少有两个需要Dicer来生产。似乎在整个进化过程中,将小RNA用于基因调控和RNAi是一个共同的主题。 在哺乳动物细胞中诱导RNAi-从机理到应用 长dsRNA导致的非特异性基因沉默 尽管已经在多种生物(植物,原生动物,昆虫和线虫)中观察到了RNAi的天然存在,但哺乳动物细胞中存在RNAi的证据需要花费更长的时间才能建立。将长dsRNA分子(> 30 nt)转染到大多数哺乳动物细胞中会导致基因表达的非特异性抑制,这与其他生物体中看到的基因特异性抑制相反。这种抑制作用归因于抗病毒反应,它通过两种途径之一发生。 在一种途径中,长dsRNA激活蛋白激酶PKR。活化的PKR进而磷酸化并使翻译起始因子eIF2a失活,从而导致翻译受阻。在另一种途径中,长dsRNA激活RNase L,导致非特异性RNA降解。 许多研究小组表明,小鼠胚胎干(ES)细胞和至少一种胚胎来源的细胞系不存在dsRNA诱导的抗病毒反应。因此,可以使用长dsRNA沉默这些特定哺乳动物细胞中的特定基因。但是,抗病毒反应无法在大多数其他哺乳动物细胞类型中使用长dsRNA诱导RNAi。 siRNA绕过抗病毒反应 有趣的是,长度小于30 nt的dsRNA不会激活PKR激酶途径。这一观察结果以及对长dsRNA会在蠕虫和果蝇中裂解形成siRNA以及siRNA能够在果蝇胚胎裂解液中诱导RNAi的认识促使研究人员测试引入siRNA是否会在哺乳动物细胞中诱导基因特异性沉默。实际上,发现通过瞬时转染引入的siRNA以序列特异性方式有效地诱导了哺乳动物培养细胞中的RNAi。 siRNA的有效性各不相同-最有效的siRNA可使靶RNA和蛋白质水平降低> 90%。事实证明,最有效的siRNA是21 nt dsRNA,带有2 nt 3"突出端。 siRNA的序列特异性非常严格,因为siRNA及其靶mRNA之间的单碱基对错配会显着降低沉默。不幸的是,并非所有具有这些特征的siRNA都是有效的。其原因尚不清楚,但可能是位置效应的结果。有关设计siRNA的最新建议,请参见“ siRNA设计”。 RNAi作为功能基因组学的工具 尽管RNAi和PTGS的历史和机理令人着迷,但许多研究人员对RNAi作为功能基因组学工具的潜在用途感到最为兴奋。 RNAi已经被用于确定果蝇,秀丽隐杆线虫和几种植物中许多基因的功能。知道可以通过转染siRNA在哺乳动物细胞中诱导RNAi,因此许多研究人员开始将RNAi用作人类,小鼠和其他哺乳动物细胞培养系统的工具。 在哺乳动物细胞的早期实验中,siRNA是化学合成的(Ambion是提供定制siRNA合成的多家公司之一)。最近,Ambion推出了一种通过体外转录生产siRNA的试剂盒(Silenceru2122siRNA构建试剂盒),这是化学合成的廉价替代品,特别是在需要合成多种不同siRNA的情况下。制备完成后,可通过瞬时转染将siRNA引入细胞。由于功效的差异,大多数研究人员会将3–4个siRNA合成为靶基因,并进行先导实验以确定最有效的一种。用这种方法已经观察到超过90%的瞬态沉默。 到目前为止,将dsRNA注射并转染到细胞和生物中已经成为传递siRNA的主要方法。尽管沉默效果持续了几天,而且似乎确实转移到了子细胞上,但最终确实减弱了。但是,最近,许多研究小组已经开发出表达载体,以在瞬时和稳定转染的哺乳动物细胞中连续表达siRNA。这些载体中的某些已被工程化以表达小发夹RNA(shRNA),该小发夹RNA在体内被加工成能够进行基因特异性沉默的siRNA样分子。载体包含在聚合酶III(pol III)启动子和4-5胸腺嘧啶核苷转录终止位点之间的shRNA序列。转录物终止于终止位点的第2位(pol III转录物自然缺少poly(A)尾巴),然后折叠成具有3"UU突出端的茎环结构。 shRNA的末端在体内进行加工,将shRNA转化为约21 nt siRNA样分子,从而启动RNAi。后一个发现与秀丽隐杆线虫,果蝇,植物和锥虫中的最新实验有关,其中折叠成茎环结构的RNA分子诱导了RNAi(在3中进行了综述)。 由另一个研究小组开发的另一种siRNA表达载体在独立的pol III启动子的控制下编码有义和反义siRNA链。该载体的siRNA链与其他载体的shRNA一样,具有5个胸苷终止信号。两种类型的表达载体的沉默功效均与瞬时转染siRNA所诱导的沉默功效相当。 最近有关RNAi的研究席卷了整个研究领域。快速,轻松地创建功能丧失表型的能力使研究人员急于尽可能多地了解RNAi和有效siRNA的特征。将来,RNAi甚至有望有望开发出基因特异性疗法。人们已经学到了很多有关这种强大技术的知识,但是几乎每天都可以获得其他信息(请参阅RNA干扰资源以了解最新的RNAi研究和工具)。可以肯定地说,RNAi正在改变功能基因组学领域。 专业术语 共抑制-由于引入转基因或被病毒感染而导致的内源基因沉默。这个术语可以指转录后(PTGS)或转录(TGS)级别的沉默,已被植物研究人员广泛采用。 转录后基因沉默(PTGS)-通过引入同源dsRNA,转基因或病毒引起的内源基因沉默。在PTGS中,沉默基因的转录物是合成的,但不会积累,因为它会迅速降解。这是一个比RNAi更通用的术语,因为它可以通过几种不同的方式触发。 抑制-引入转基因诱导的神经孢菌中的PTGS。 RISC-RNA诱导的沉默复合物。核酸酶复合物,由蛋白质和siRNA组成(见下文),靶向并破坏与复合物中siRNA互补的内源性mRNA。 RNA干扰(RNAi)-直接引入dsRNA诱导的转录后基因沉默(PTGS)。研究人员首先对秀丽隐杆线虫使用“ RNA干扰”一词。 siRNA-小干扰RNA。 PTGS的当前模型表明,这些21-23个核苷酸的dsRNA介导PTGS。 siRNA的引入可以在哺乳动物细胞中诱导PTGS。 siRNA显然是通过直接或通过转基因或病毒导入的dsRNA裂解体内产生的。 RNA依赖性RNA聚合酶(RdRP)的扩增可能发生在某些生物中。将siRNA掺入RNA诱导的沉默复合物(RISC)中,将复合物引导至同源内源性mRNA,其中复合物切割转录物。

基因干扰常用方法有哪些

RNA干扰的分子抑制机制的三种方式及原理转录抑制 与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。转录后抑制不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。翻译抑制 Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

氨基酸的替换是不是基因突变

A、基因突变是指DNA分子中由于碱基对的替换、缺失或增添而引起的基因结构的改变,所以信使RNA上的某个密码子的一个碱基发生替换不属于基因突变,A错误; B、tmRNA上决定氨基酸的某个密码子的一个碱基发生替换,根据碱基互补配对原则,则识别该密码子的tRNA上的反密码子也发生改变,B正确; C、一种密码子只决定一种氨基酸,一种氨基酸可由一种或几种来决定,即存在密码子的简并性,所以氨基酸不一定改变,C错误; D、tRNA一定改变,氨基酸不一定改变,D错误. 故选:B.

基因中的编码区和非编码区都能够转录成RNA吗

非编码rna指的是不被翻译成蛋白质的rna,如trna,rrna等,这些rna不被翻译成蛋白质,但是其中有一些会参与蛋白质翻译过程。此外还有snrna,snorna等参与rna剪接和rna修饰,mirna也是非编码rna,是小的rna分子,与转录基因互补,介导基因沉默(rnai),  grna又称引导rna,真核生物中参与rna编辑的具有与mrna互补序列的rna;  erna,从内含子或dna非编码区转录的rna分子,精细调控基因的转录和翻译效率;  snprna,信号识别颗粒rna,细胞质中与含信号肽mrna识别,决定分泌的rna功能分子; prna,噬菌体rna,fi29噬菌体中用6个同样的小rna分子利用atp参与dna的包装;  tmrna,具有trna样和mrna样复合的rna,广泛存在细菌中,识别翻译或读码有误的核糖体,也识别那些延迟停转的核糖体,介导这些有问题的核糖体的崩解;  最后就是mrna中的非翻译区,含有核糖体识别元件如5"-utr,3"-utr等。

请问什么是非编码基因,什么是非编码序列,什么是非编码RNA?他们各有什么作用?

这个先要知道原核生物和真和生物的基因结构的不同点原核生物:由编码区和非编码区组成,在非编码区的上游有RNA聚合酶结合位点。编码区是连续的,不间隔的。这个区域的DNA序列都能编码蛋白质,叫编码序列。非编码区的是不能编码蛋白质的DNA序列组成的,叫非编码序列。真核生物:由编码区和非编码区组成,在非编码区的上游有RNA聚合酶结合位点。编码区是不连续的,间隔的,有外显子和内含子组成。外显子的DNA序列都能编码蛋白质,叫编码序列,而内含子的DNA序列不能编码蛋白质,叫非编码序列。非编码区的是不能编码蛋白质的DNA序列组成的,叫非编码序列。所以说真核生物的非编码序列包含有内含子和非编码区的序列。注意:真核生物的编码区在编码蛋白质的时候,整个编码区都要进行转录形成mRNA,但是由内含子转录出来的mRAN由于不能翻译成蛋白质,所以要切除。综上所述,非编码序列指的是不能编码蛋白质的DNA序列,比如有非编码区的序列和内含子。非编码RNA指的是不能翻译成蛋白质的RNA序列,比如由内含子转录出来的mRNA。好像没有什么非编码基因,要说的话,也就是非编码DNA序列。

基因敲除后是回复实验还是恢复实验

所以拿到突变株后要做回补实验来排除是由polar effect引起的,已经做了敲除转化子的胞外酶活性测定,前两种情况因为插入了抗性基因比较好筛选突变子,将几个可能与致病力相关的基因做了敲除,通过致病力筛选,做了会更好,但是由于外源的插入了抗性基因容易引起polar effect;3)同框缺失即完整的使原基因敲除掉、胞外多糖分泌测定、比对获得全基因之后。第三种情况得到的突变株比较好但筛选工作量很大、致病性测定等等,所谓的敲除不外乎有三种情况,不过不知道将互补做完了之后还有什么可以做的,如果是第三种情况得到的突变株不做回补也没关系。通过敲除来研究基因的功能,现在正在构建互补载体;2)抗性基因双交换替换掉原基因做黄单胞,在通过Tn5构建转化子库之后:1)单交换插入抗性基因使原基因失活、Tail-PCR获得侧翼序列、生长曲线

为什么要基因敲除,而不是直接用限制酶切掉基因呢?保证染色体结构吗?

1、敲除基因一般都是做的同框缺失,即保证整个序列不会出现移码突变,敲除掉的通常是从起始密码子开始三个三个的敲掉,这样的话被敲掉的基因不能正常表达了,但是不会影响后面无关基因的表达。2.同源重组是发生在同源序列上的,一般能够发生同源重组的载体都带有同基因序列同源的序列,这样这两段序列在体内就会结合在一起,从而有很高的几率发生交换从而重组。具体说的话就很长了,可以去找一本分子生物学方面的书,会讲得很详细的,有图看,会很好理解~~~祝早点解决疑惑哈~o(∩_∩)o ~~

pbt2质粒基因敲除原理

.实现基因敲除的多种原理1利用基因同源重组进行基因敲除基因敲除是80年代后半期应用DNA 同源重组原理发展起来的。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985年,**证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson**建立了完整的ES细胞基因敲除的小鼠模型[1]。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中*普遍的使用方法。

基因敲除技术的原理是什么?

基因敲除是基因打靶技术的一种,类似于基因的同源重组。指外源DNA与受体细胞基因组中序列相同或相近的基因发生同源重组,从而代替受体细胞基因组中的相同、相似的基因序列,整合入受体细胞的基因组中。此法可产生精确的基因突变,也可正确纠正机体的基因突变。

基因敲除和基因干扰有什么区别?

基因敲除包括的面比较广,从DNA到RNA都有涉及,也就是说基因敲除包括DNA碱基对的替换和修饰,而基因干扰仅仅是在翻译水平上阻止RNA的翻译,降解特定的信使,对基因本身没有什么影响!

为什么基因敲除会导致基因表达量下降

基因敲除,顾名思义就是把基因移除,一个细胞里面,这个基因都没有了,当然是不能能表达这个基因多代表的蛋白。当然,每一个基因有许多个转录本,有的时候我们以为敲除了这个基因,但其实只是打靶到了这个基因的某个/些转录本,并没有打靶全部转录本。这样的话,有可能会出现基因还有表达的情况出现。这种情况下,可以使用红棉系统设计自己感兴趣的基因的敲除方案,红棉会把上述情况考虑进去的。

基因敲除技术怎麽回事?原理、应用?

简单的说,就是把特定的一个基因从基因组中去掉(knockout),然后看看有什么反应。如果出现了异常,说明敲掉的这个基因有相关的功能。敲掉的方法现在比较多,一般是通过同源重组,也有用RNA干扰之类。技术上面比较麻烦,做起来难度不小。应用目前基本上还仅仅局限在研究方面,从分子水平研究基因的功能。参考文献可以看看:http://www.cnpkm.com/web/user_info/hongdy/20060920181924512.dochttp://www.kpzs.net/rural/161/200612/38240.htmlhttp://www.gzkj.gov.cn/kjxcd/newsDetail.jsp?infoId=70475&clId=245&page=1&type=70

细胞基因敲除需要考虑等位基因吗

当然需要,基因敲除最理想的情况是这个基因完全不表达。所以做gRNA载体之前,最好验证一下自己靶位点的正确性,再根据靶位点的突变情况修改gRNA。靶位点验证是CRISPR-U预实验环节最基本的步骤。

基因敲除和基因干扰有什么区别

基因敲除和基因干扰的区别在于,基因敲除是根据需求敲除某个基因,而基因干扰是对这个基因进行干扰操作。基因敲除和基因嵌入技术是上个世纪90年代出现的最新外源DNA导入技术。基因敲除是基因打靶技术的一种,类似于基因的同源重组。指外源DNA与受体细胞基因组中序列相同或相近的基因发生同源重组,从而代替受体细胞基因组中的相同/相似的基因序列,整合入受体细胞的基因组中。有基因敲除需要的可以联系苏州赛业。赛业生物已服务全球数万名科学家,产品和技术已直接应用于包括CNS(Cell,Nature, Science)三大期刊在内的学术论文。除了提供基因敲除、基因敲入、条件性基因敲除模型定制服务外,赛业生物还有专业的手术疾病模型团队,可以提供多种复杂精细的小动物手术疾病模型;药物筛选评价小鼠平台可以提供从欧美行业领袖引进的免疫缺陷鼠、用于心血管及阿尔茨海默症等研究的人源化小鼠;国际标准化无菌鼠技术平台可以提供无菌鼠、无菌动物定制服务、微生物菌群移植服务等基于无菌动物模型的各类产品和服务,结合赛业生物成熟稳定的基因编辑小鼠平台,还可帮助您研究菌群与基因的互作机制。

基因插入与基因敲除一样吗

不一样。基因插入(gene insertion)是指在一段DNA序列中插入一个或数个基因,通常插入位点的序列信息被干扰。而基因敲除(gene knock-out)则通常是用DNA重组互换的方法把目标序列上的某个或几个基因置换掉(即敲除掉)

基因敲除和 转染 是一个意思吗

  这两个概念不仅不同,甚至有些相反。  基因敲除是指将某个基因从基因组中去掉。基因转染是指将某个基因转入细胞的过程,常用的技术有电转、磷酸钙转染、脂质体转染和病毒载体介导的转染。  从技术上讲,基因敲除是一套复杂的过程,需要用到许多生物技术,耗时长,通常要数月时间。转染就简单很多,只需要一到数天时间。

请问,什么是基因敲除小鼠?

基因敲除小鼠就是先在小鼠的胚胎干细胞上通过基因重组的办法进行基因修饰,是特定基因表达缺失。集萃药康专业定制基因敲除模型,品系资源丰富,可以百度了解的。

基因敲除和基因修饰的区别

基因敲除是指在基因组上把目的基因剔除使其不能正常工作,而基因修饰包括基因敲除、基因敲入、基因过表达。

基因表达量多少克视为基因敲除成功

24 基因敲除科学家运用基因工程删除了猪细胞中的对人产生排斥的基因,培育成可以用于人类进行器官如心脏移植的“基因敲除猪”.从变异角度来看,这种变异是x0dA、基因重组 B、染色体变异 C、基因突变 D、不遗传变异x0d25、科学家用纳米技术制造出一种“生物导弹”,可以携带DNA分子.把它注射入组织中,可以通过细胞的内吞作用的方式进入细胞内,DNA被释放出来,进入到细胞核内,最终整合到细胞染色体中,成为细胞基因组的一部分,DNA整合到细胞染色体中的过程,属于x0dA.基因突变 B.基因重组 C.基因互换 D.染色体变异

基因敲除和 转染 是一个意思吗

  这两个概念不仅不同,甚至有些相反.  基因敲除是指将某个基因从基因组中去掉.基因转染是指将某个基因转入细胞的过程,常用的技术有电转、磷酸钙转染、脂质体转染和病毒载体介导的转染.  从技术上讲,基因敲除是...

基因敲除属于基因工程吗

24 基因敲除科学家运用基因工程删除了猪细胞中的对人产生排斥的基因,培育成可以用于人类进行器官如心脏移植的“基因敲除猪”。从变异角度来看,这种变异是 A、基因重组 B、染色体变异 C、基因突变 D、不遗传变异 25、科学家用纳米技术制造出一种“生物导弹”,可以携带DNA分子。把它注射入组织中,可以通过细胞的内吞作用的方式进入细胞内,DNA被释放出来,进入到细胞核内,最终整合到细胞染色体中,成为细胞基因组的一部分,DNA整合到细胞染色体中的过程,属于 A.基因突变 B.基因重组 C.基因互换 D.染色体变异

基因敲除与转基因的区别是什么

前者是将原有的基因去掉某一个或几个,后者是增加一个或多个原来没有的基因,这两种都是基因工程常用的方法

关于“基因敲除”的原理和本质?

我也不是很肯定,试着回答一下:A百度百科上关于基因敲除有如下话:基因敲除就是通过同源重组将外源基因定点整合入靶细胞基因组上某一确定的位点,以达到定点修饰改造染色体上某一基因的目的的一种技术。就此定义,A恰当一些。染色体变异:强调整个染色体的变化,其效果多用光镜就可以观察出来的,包括缺失,易位等,而题干中所谓敲除是基因水平的,排除;基因突变:由于核酸序列发生变化,包括缺失突变、定点突变、移框突变等,敲除应当是说往基因中加入另一段核苷酸序列,不是原核苷酸本身的改变,不太合适;不可遗传变异,直接排除,否则那些在研究所里一个一个敲基因的生物学家们就该哭了。综上,我认为选A。

CRISPR-Cas9基因敲除实验步骤 day 1

这里我们先前已经完成: CRISPR-Cas9基因敲除sgRNA设计 1.输入目标基因组DNA序列 我们提供在线CRISPR设计工具( http://tools.genome-engineering.org ) 可以输入序列(例如,来自目的区域的一个1KB基因片段),识别和排列合适的靶位点,计算预测每个指定靶标的off-target位点。或者,可以通过确认任何5"-NGG直接上游的20-bp序列手动选择引导序列。 2.用在线工具确定,订购需要的oligos和引物。如果手动确定分裂位点,oligos或引物应该按照fig4b.c设计 设计ssODN模板(任选) 1 h 我们没有选这个方法--略 3.设计和订购定做的ssODN。 4.重新溶解和稀释ssODN ultramers到终浓度10uM。 5.为了构建sgRNA表达结构,使用PCR表达cassette(选项A)或 以质粒为基础的步骤(选项B) --我们选择了方案B (A)通过PCR扩增构建sgRNA表达结构 2 h--没选这个方案,略 (B)sgRNA cloning进入pSpCas9(BB)质粒,与Cas9共表达 3 d Pause point:此处理后,反应可以储存在-20℃至少1周 感谢师兄DZ

请教基因敲除小鼠的问题

你这里遇到的是做组织特异性敲除小鼠。GGT是gamma glutamyl transpeptidase 即γ-谷氨酰转肽酶 ,这是一种只在肾脏近端小管(Proximal tubule)的上皮细胞中表达的酶,GGT-cre则表示在cre基因之前加上GGT的启动子,具有这种cre的小鼠只会在肾脏中表达cre。当带有这种cre基因的小鼠同时带有loxp位点(即/floxp/GGT-cre)时,该loxp位点中间的碱基序列就会特异性的在肾脏近端小管上皮细胞中被敲除,而其他组织器官不受到直接的影响。所以,UNC5B(-/flox) 表是在UNC5B基因中带有loxp位点的小鼠,可以把它当做基因敲除小鼠的对照组用,和野生型小鼠没有区别,而UNC5B(-/flox/GGT-cre) 则表示在肾脏近端小管上皮细胞中特性性敲除UNC5B基因的小鼠。

做微生物的基因敲除大概一个基因要多久

这个应该是没有一个标准时间的,取决于基因的位置,敲除的工具、熟练度等很多方面的问题吧。况且还有细胞培养的时间。基因敲除和基因嵌入技术是上个世纪90年代出现的最新外源DNA导入技术。基因敲除是基因打靶技术的一种,类似于基因的同源重组。基因敲除技术是20世纪80年代发展起来的,是建立在基因同源重组技术基础以及胚胎干细胞技术基础上的一种新分子生物学技术。所谓胚胎干细胞(EmbryonicStem cell,ES)是从着床前胚胎(孕3—5天)分离出的内细胞团(Inner cellmass,ICM)细胞,它具有向各种组织细胞分化的多分化潜能,能在体外培养并保留发育的全能性。在体外进行遗传操作后,将它重新植回小鼠胚胎,它能发育成胚胎的各种组织。而基因同源重组是指当外源DNA片段大且与宿主基因片段同源性强者并互补结合时,结合区的任何部分都有与宿主的相应片段发生交换(即重组)的可能,这种重组称为同源重组。 爱莫能助......

基因敲除算不算转基因?

基因敲除是基因工程中常用的方法:基因敲除是指一种遗传工程技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因,令特定的基因功能丧失作用,从而使部分功能被屏障,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。它与普通的转基因技术还是有区别的:基因敲除是将原有的基因去掉某一个或几个,转基因是增加一个或多个原来没有的基因。二者的共同点是:都是基因工程中常用的方法。

CRISPR/Cas9基因敲除,敲入怎么做,原理

1.利用基因同源重组进行基因敲除基因敲除是80年代后半期应用DNA同源重组原理发展起来的。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的使用方法。2.诱导性基因敲除也是以Cre/loxp系统为基础,但却是利用控制Cre表达的启动子的活性或所表达的Cre酶活性具有可诱导的特点,通过对诱导剂给予时间的控制或利用Cre基因定位表达系统中载体的宿主细胞特异性和将该表达系统转移到动物体内的过程在时间上的可控性,从而在1oxP动物的一定发育阶段和一定组织细胞中实现对特定基因进行遗传修饰之目的的基因敲除技术。人们可以通过对诱导剂给予时间的预先设计的方式来对动物基因突变的时空特异性进行人为控制、以避免出现死胎或动物出生后不久即死亡的现象。常见的几种诱导性类型如下:四环素诱导型;干扰素诱导型;激素诱导型;腺病毒介导型。

怎样选择真菌基因敲除载体

1.利用基因同源重组进行基因敲除基因敲除是80年代后半期应用DNA同源重组原理发展起来的。80年代初,胚胎干细胞(ES细胞)分离和体外培养的成功奠定了基因敲除的技术基础。1985年,首次证实的哺乳动物细胞中同源重组的存在奠定了基因敲除的理论基础。到1987年,Thompsson首次建立了完整的ES细胞基因敲除的小鼠模型。直到现在,运用基因同源重组进行基因敲除依然是构建基因敲除动物模型中最普遍的使用方法。2.诱导性基因敲除也是以Cre/loxp系统为基础,但却是利用控制Cre表达的启动子的活性或所表达的Cre酶活性具有可诱导的特点,通过对诱导剂给予时间的控制或利用Cre基因定位表达系统中载体的宿主细胞特异性和将该表达系统转移到动物体内的过程在时间上的可控性,从而在1oxP动物的一定发育阶段和一定组织细胞中实现对特定基因进行遗传修饰之目的的基因敲除技术。人们可以通过对诱导剂给予时间的预先设计的方式来对动物基因突变的时空特异性进行人为控制、以避免出现死胎或动物出生后不久即死亡的现象。常见的几种诱导性类型如下:四环素诱导型;干扰素诱导型;激素诱导型;腺病毒介导型。

国内能做基因敲除小鼠的公司有哪些比较好的?

在国内能做基因敲除鼠的公司中,赛野生物是最好的一家。基因敲除(Gene knockout)是通过同源重组将外源基因整合到靶细胞基因组上的某一位点,从而达到修饰染色体上某一位点基因的目的的技术。它克服了随机整合的盲目性和偶然性,是修饰和改造生物遗传物质的理想方法。赛叶生物已服务全球数万名科学家,其产品和技术已直接应用于包括CNS(Cell,Nature,Science)在内的学术论文。赛野生物除了提供基因敲除、基因敲除、条件基因敲除模型的定制服务外,还拥有专业的外科疾病模型团队,可以为小动物提供多种复杂精细的外科疾病模型;药物筛选与评价小鼠平台可以提供从欧美行业领先企业进口的免疫缺陷小鼠和用于心血管和阿尔茨海默病研究的人源化小鼠。国际标准化无菌小鼠技术平台可提供基于无菌动物模型的各类产品和服务,如无菌小鼠、无菌动物定制服务、微生物菌群移植服务等。结合赛野生物成熟稳定的基因编辑鼠平台,还可以帮助你研究菌群与基因的相互作用机制。基因敲除的门槛低,转基因动物的自我准备相当耗时。一般可以在实验前查阅相关文献,看看有没有研究人员建立了你需要的品系动物,可以直接向对方求助。一般nice的研究人员都会和你分享。毕竟,北京柯睿生物技术有限公司是一个有技术保证的专家团队。国内能做敲除鼠的公司的楼主可以看看文献,里面都是成功的故事吧?肯定更好。

crispr cas9基因敲除原理是什么?

基本原理:CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,其序列由一个前导区(Leader)、多个短而高度保守的重复序列区(Repeat)和多个间隔区(Spacer)组成。前导区一般位于CRISPR簇上游,是富含AT长度为300~500bp的区域,被认为可能是CRISPR簇的启动子序列。重复序列区长度为21~48bp,含有回文序列,可形成发卡结构。基因编辑技术形式有:1、同源重组同源重组(Homologous recombination)是最早用来编辑细胞基因组的技术方法。同源重组是在DNA的两条相似(同源)链之间遗传信息的交换(重组)。2、核酸酶基因编辑的关键是在基因组内特定位点创建DSB。常用的限制酶在切割DNA方面是有效的,但它们通常在多个位点进行识别和切割,特异性较差。为了克服这一问题并创建特定位点的DSB。

请问基因敲除技术的应用及前景如何?

基因敲除技术的应用及前景:①.建立生物模型。在基因功能,代谢途径等研究中模型生物的建立非常重要。基因敲除技术就常常用于建立某种特定基因缺失的生物模型,从而进行相关的研究。这些模型可以是细胞,也可以是完整的动植物或微生物个体。最常见的是小鼠,家兔、猪、线虫、酵母和拟南芥等的基因敲除模型也常见于报道。②.疾病的分子机理研究和疾病的基因治疗。通过基因敲除技术可以确定特定基因的性质以及研究它对机体的影响。这无论是对了解疾病的根源或者是寻找基因治疗的靶目标都有重大的意义。③. 提供廉价的异种移植器官。众所周知,器官来源稀少往往是人体器官移植的一大制约因素,而大量廉价的异种生物如猪等的器官却不能用于人体。这是因为异源生物的基因会产生一些能引起人体强烈免疫排斥的异源分子,如果能将产生这些异源分子的基因敲除,那么动物的器官将能用于人体的疾病治疗,这将为患者带来具大的福音。如:PPL Therapeutics 公司于1999 年已成功地在猪的体细胞中用基因敲除技术敲除了α-1,3GT 基因。使每只猪都缺乏产生a1-3半乳糖基转移酶的基因的2个拷贝。这些酶在细胞表面产生一种糖分子,人体的免疫系统可以立即辨认出这种糖分子为异源性,从而引发超急性免疫排斥反应。在缺乏这种酶的情况下,超急性排斥反应即不会再发生。④. 免疫学中的应用。同异源器官移植相似,异源的抗体用于人体时或多或少会有一定的免疫排斥,使得人用抗体类药物的生产和应用受阻。而如果将动物免疫分子基因敲除,换以人的相应基因,那么将产生人的抗体,从而解决人源抗体的生产问题。⑤改造生物、培育新的生物品种。细菌的基因工程技术是本世纪分子生物学史上的一个重大突破,而基因敲除技术则可能是遗传工程中的另一重大飞跃。它为定向改造生物,培育新型生物提供了重要的技术支持。…………更多内容参见on http://doc.bio1000.com/list-12.html 基因技术,Southern Blotting,DNA甲基化,基因组学,DNA技术,基因克隆,DNA测序

降低体内某蛋白表达除基因敲除还有哪些方法

基因敲除是将细胞基因组中某基因去除或使基因失去活性的技术。去除原核生物细胞、真核生物的生殖细胞、体细胞或干细胞基因组中的基因等。广义的基因敲除包括某个或某些基因的完全敲除、部分敲除、基因调控序列的敲除以及成段基因组序列的敲除。常用同源重组的方法。敲除的基因用以观察生物或细胞的表型变化,是研究基因功能的重要手段。

哪位知道基因敲除的具体步骤?

ES细胞的获得  现在基因敲除一般应用于鼠,而最常用的鼠的种系是129及其杂合体,因为这类小鼠具有自发突变形成畸胎瘤和畸胎肉瘤的倾向,是基因敲除的理想实验动物。而其他遗传背景的胚胎干细胞系逐渐被发展应用,最近来自于C57BL/6×CBN/JNCrjF1小鼠的胚胎干细胞系成功地用于基因敲除。c57BL/6小鼠种系等已经广泛的应用于免疫学领域,并以此为背景建立了许多成功的转基因模型。基因载体的构建  把目的基因和与细胞内靶基因特异片段同源的DNA分子都重组到带有标记基因(如neo基因,TK基因等)的载体上,此重组载体即为打靶载体。因基因打靶的目的不同,此载体有不同的设计方法,可分为替换性载体和插入型载体。如为了把某一外源基因引入染色体DNA的某一位点上,这种情况下应设计的插入型载体要包括外源基因(即目的基因)、同源基因片段及标记基因等部分。如为了使某一基因失去其生理功能,这时所要设计的替换型打靶载体,应包括含有此靶基因的启动子及第一外显子的DNA片段及标记基因等诸成分。目的基因导入  将基因打靶载体通过一定的方式(常用电穿孔法)导入同源的胚胎干细胞(EScell)中,使外源DNA与胚胎干细胞基因组中相应部分发生同源重组,将打靶载体中的DNA序列整合到内源基因组中从而得以表达。一般地,显微注射命中率较高,但技术难度较大,电穿孔命中率比显微注射低,但便于使用。用选择性培养基筛选已击中的细胞  一般地,筛选使用正、负选择法,比如用G418筛选所有能表达neo基因的细胞,然后用Ganciclovir淘汰所有HSV-TK正常表达的细胞,剩下的细胞为命中的细胞。将筛选出来的靶细胞导入鼠的囊胚中,再将此囊胚植人假孕母鼠体内,使其发育成嵌合体小鼠。观察生物学性状的改变  通过观察嵌和体小鼠的生物学形状的变化进而了解目的基因变化前后对小鼠的生物学性状的改变,达到研究目的基因的目的。

基因敲除,怎么做最简单?

通过同源重组使特定靶基因失活,以研究该基因的功能,称为基因敲除(gene knock-out)基因敲除的技术路线如下:(1)构建重组基因载体﹔(2)用电穿孔等方法把重组DNA转入受体细胞内﹔(3)用选择培养基筛选已击中的细胞﹔(4)分子生物学检测。据俺所知目前有RecA重组系统、Red重组系统1、RecA重组系统由RecA和RecBCD组成,必须以环形的质粒状态存在。2、Red同源重组系统由λ噬菌体exo、bet、gam三个基因组成,线性载体即可。目前用这种方法敲除大肠杆菌的已经非常成熟了。也有很多人用基因沉默来研究细菌(例如antisense RNA)
 首页 上一页  5 6 7 8 9 10 11 12 13 14 15  下一页  尾页