基因表达

DNA图谱 / 问答 / 标签

营养素对基因表达的调控多发生在什么水平?

基因多态性对营养素的影响 DNA结构在不同生物体内有很大差异,正是这种差异导致生物物种多样性和不同生物间形态学特征和生物学特征的差异。同种生物不同个体间,DNA结构虽有很大同源性,但仍存在差异,也正是差异导致同种生物不同个体在形态学和生物学特征也存在一定差异。DNA结构差异包括DNA序列和长度差异,这种差异多数发生在不编码蛋白质区域及无重要调节功能区域,少数发生在蛋白质编码区及调节基因表达区域。DNA结构差异实质是DNA序列某些碱基发生突变。在1%~50%人群中,平均每200~300核苷酸就有1个碱基发生突变,可见个体间DNA结构存在很大差异。但因突变多发生在非基因序列,有些多数突变得不到表达,不会产生任何后果;而发生在基因序列的突变,有些是正常突变,有些有益,有些有害,甚至是致死的,有些条件有害。当某些碱基突变在人群发生率不足1%时,称为罕见遗传差异;当某些碱基突变(产生2种或2种以上变异现象),人群发生率超过1%~2%时,就称为基因多态性(gene polymorphism)或遗传多态性。当碱基突变发生在基因序列时,可产生1个基因的1种以上不同形式,又称1个基因不同基因型,在人群发生率超过1%,此时称为基因多态性。人体约存在30%基因多态性,也就是说有30%基因发生突变,约70%基因可能没有发生突变,这就是人类个体间在许多方面很相似但又有差别的原因。因此,基因多态性决定个体间差异。如基因多态性存在于与营养有关基因中,就会导致不同个体对营养素吸收、代谢和利用存在很大差异,并最终导致个体对营养素需要量的不同。(一)维生素D受体基因多态性对钙吸收及骨密度的影响影响骨质疏松症发生因素很多,包括年龄,性别;不同生理状态,如妇女绝经前后;机体营养状况,特别是钙摄入水平;生活方式,如饮酒、吸烟、运动等。但这些环境因素无法解释同一国家内和不同国家间骨质疏松症发生广泛存在的原因;此外,家族遗传性、双胞胎配对及不同种族之间的比较研究,均说明骨质疏松症存在遗传因素影响。其中因VDR基因多态性对钙吸收及骨密度均有影响。因此,有可能成为骨质疏松症发生的遗传因素之一。VDR基因因碱基突变,形成3种基因型,即bb因型、BB基因型核Bb基因型。研究发现,携带BB基因型绝经期妇女,摄入低钙饮食时,其钙吸收量要比携带有bb基因型绝经期妇女明显减少;另一项研究发现,当每天钙摄入量在300mg(低)至1500mg(高)变化时,bb基因型是钙吸收率低基因型,这种基因型不能适应低钙饮食摄入情况。目前钙推荐摄入量为800~1200mg/d,当800mg/d时,BB基因型人群,有相当部分个体不能摄入足够钙量并出现钙缺乏。因此,BB基因型人群钙RNI要适量高某些。对72位老年人18个月研究发现,所有BB基因型老年人骨密度均发生丢失,所有26个bb基因型老人骨密度均未丢失,上述情况均与钙摄入量无关。另外37人基因型为Bb,骨密度变化随钙摄入量不同而有改变。因此,bb基因型是高骨密度基因型,BB基因型是低骨密度基因型,这2种基因型骨密度对钙摄入量变化反应不大,甚至与钙摄入量无关;而携带有Bb基因型者骨密度与钙摄入量呈剂量-反应关系。VDR 3种不同基因型在不同的国家、甚至同一国家不同种族间基因频率分布不同。如日本人bb基因型约占75%,而BB基因型所占比例较低;高加索人群中bb基因型约占33%,而Bb基因型约占50%。VDR基因型在不同种族人群中不同分布,可说明不同种族人群中也有不同的分布,这可说明个体间在钙吸收、骨密度及骨质疏松症发生存在差异的原因。因此,针对不同国家、不同种族及不同个体,在制订钙推荐摄入量时应考虑不同基因型影响。如可能应针对不同基因型制订不同饮食供给量标准。另外,在进行补钙饮食干预时也应考虑不同基因型影响,以便确定哪种基因型人群在补钙时会获得最大益处,而哪些基因型人群获益不大,甚至一点效果没有,以便针对性补钙;而对补钙效果不明显基因型人群,则应采取其他食物或药物干预,不要盲目补钙。(二)营养素对基因表达的调控机制1.营养素对基因表达作用特点 几乎所有营养素对基因表达都有调节作用。其作用特点是一种营养素可调节多种基因的表达;一种基因表达又受多种营养素调节。一种营养素不仅可对其本身代谢途径所涉及的基因表达进行调节,还可影响其他营养素代谢途径所涉的基因表达。营养素不仅可影响细胞增殖、分化及机体生长发育有关的基因表达,而且还可对致病基因表达产生重要调节作用。2.营养素对基因表达调控水平 营养素可在基因表达所有水平,包括转录前、转录、转录后、翻译和翻译5个水平上对其进行调节,虽不同营养素各有其重点或专一调节水平,但绝大多数营养素对基因表达调节在转录水平。3.营养素对基因表达调控途径 营养素本身及其代谢产物可作为信号分子,作用于细胞表面受体或直接作用于细胞内受体,激活细胞信号转导系统,并与转录因子相互作用激活基因表达,或直接激活基因表达。主要途径:1cAMP蛋白激酶途径;2酪氨酸激酶系统,以上2个途径主要是通过对某些转录因子和/或辅助因子磷酸化和去磷酸化作用,影响这些因子激活基因转录的活性;3离子通道;4和/或磷酸肌苷酸介导的途径;5细胞内受体途径,细胞内受体可以是催化反应酶,也可以是基因表达调控蛋白。大多数营养素对基因表达调控通过细胞内受体途径实现。实际上,营养素对基因表达调控过程相当复杂,可简化为下列步骤: 辅助激活因子(可有可无)营养素→细胞内受体→配体受体结合——————————————→DNA特异反应元件→基因表达∣ ↓ 磷酸化或去磷酸化 ↑ ↑∣ 调节活性蛋白—————————————————— ∣ ↓ 增强或降低表达 ∣转录因子基因—————————————————————————————转录因子(三)营养素对基因表达调控1.碳水化合物对基因表达调控 对许多基因表达有调控作用,主要在碳水化合物在胃肠消化成葡萄糖及吸收入血后,葡萄糖刺激脂肪组织、肝、胰岛β细胞中脂肪酶合成体系和糖酵解酶基因转录。以葡萄糖对肝细胞L-丙酮酸酶(L-pyru-vate kinase ,L-PK)基因和S14 基因表达调控为例,介绍碳水化合物对基因表达调控机制及实际意义。(1)葡萄糖对L-PK基因和S14基因调控机制:L-PK基因编码的蛋白为L-丙酮酸激酶,是葡萄糖酵解的关键限速酶;S14基因编码含硫蛋白,甲状腺素、碳水化合物和脂肪等对其表达有明显调节作用,并与脂肪合成酶基因表达有明确相关性,对脂肪代谢起重要作用。L-PK基因和S14基因都不存在对葡萄糖做出特异应答反应的元件(葡萄糖反应元件)。L-PK基因葡萄糖反应元件位于启动子的-172~124bp,而S14基因葡萄糖反应元件位于启动子的-1457~-1428bp,二者10个碱基对有9个始相同,均具有共同序列5"-CACGTG-3",这表明2种基因表达都受共同调节因子调控,L-PK基因启动子有2个因子结合位点,一个位点与上游刺激因子(upstream stimulating factor,USF)结合,属于c-myc 家族普遍表达成员,起转录因子作用;另一个位点与肝增强因子(hepatic enriched factor,HNF-4)或肝核因子(hepatic nuclear factor)结合,属于类固醇/甲状腺素受体家族的孤儿受体,起转录辅助因子作用。USF因子结合位点和HNF-4因子结合位点二者须同时存在,才能对葡萄糖作出应答反应,从而调节基因转录。但USF因子结合位点起主要作用,主要接收葡萄糖代谢产生的信号,HNF-4因子结合位点起辅助作用。S14基因启动子也含2个因子结合位点,一是与L-PK基因相同的USF因子结合位点,二是辅助因子结合位点,但辅助因子目前还不明确。同样二者必须联合在才能使S14基因对葡萄糖浓度变化作出应答反应。因L-PK基因和S14基因都含有共同的USF结合位点,并能对葡萄糖和胰岛素做出应答反应。因此,USF结合位点又称为葡萄糖/胰岛素反应元件(glucose/insulin response element ,GIRE)或碳水化合物反应元件(carbohydrate response element)。葡萄糖在葡萄糖激酶作用下形成葡萄糖-6-磷酸,是刺激基因表达的直接信号分子。葡萄糖激酶表达受体胰岛素调控。因此,胰岛素对通过刺激葡萄糖激酶表达,加快葡萄糖代谢,对基因表达间接发挥作用。但胰岛素并非是必需的,如果葡萄糖激酶数量和活性足够,在葡萄糖刺激基因转录中不再需要胰岛素参与。葡萄糖-6-磷酸,可能通过2种方式激活USF。一是葡萄糖-6-磷酸可与USF结合形成复合物,然后再与USF结合定位结合,从而调节基因转录;二是葡萄糖-6-磷酸激活一种蛋白激酶,使USF发生磷酸化或去磷酸化,从而影响USF与DNA特异序列结合。(2)实际意义:肝糖酵解产生丙酮酸,进入三羧酸循环后不是进行进一步氧化、产生能量,而是作为合成脂肪底物。长期摄入高碳水化合物饮食,可导致肝细胞脂肪堆积并致肥胖。为防止高碳水化合物饮食的危害,可降低碳水化合物的摄入,还可通过对葡萄糖刺激L-PK基因表达途径干预,如利用葡萄糖激酶刺激抑制剂、USF和HNF-4转录因子抑制剂等抑制L-PK基因表达,降低脂肪合成。相反,如L-PK活性过低,影响脂肪的正常合成,可对上述途径应用激活剂L-PK基因的表达。2.胆固醇对基因表达的调控 所有哺乳动物都需要胆固醇进行生物膜和某些激素生物合成。因此,应适量摄入胆固醇,维持正常生理功能;而过量摄入可导致动脉粥样硬化,引起冠心病和脑卒中。人体内的胆固醇,来源于食物摄入和体内合成。机体可以通过负反馈机制调节胆固醇摄入和代谢的几个关键基因,调节胆固醇的来源。LDL受体在细胞摄取胆固醇时起关键作用;HMG-CoA还原酶和HMG-CoA合成酶是胆固醇的从开始生物合成的关键控制点。当细胞内胆固醇水平低时,参与胆固醇生物合成和摄取这些基因被激活;反之,当细胞内胆固醇充足时,这些基因表达被抑制。胆固醇对上述3个基因表达调控水平包括转录和转录后2个水平。以下以转录水平调控为例,介绍胆固醇对基因表达调控。(1)胆固醇对LDL受体基因、HMG-CoA合成酶基因调控机制:LDL受体基因、HMG-CoA还原酶基因和HMG-CoA合成酶基因在启动子区均有相同固醇调节序列,即(5")CACC(C/G)CAC,该序列称为固醇调节或反应元件-1(sterol regulatory element-1, SRE-1)。转录因子可与SRE-1结合并调节基因转录活性;而转录因子又受固醇类化合物修饰、调节。与SRE-1结合并调节基因转录的2个转录因子,分别称为固醇调节元件结合蛋白-1(sterol regulatory element-binding protein-1,SREBP-1)和胆固醇调节元件结合蛋白-2(SREBP-2)。SREBPs结合在内质网膜上,有4个结构域组成,包括2个跨膜区域和1个N端结构域、1个羧基端结构域(这2个结构域均在细胞质中)。N-端结构域约有480个氨基酸,含有1个螺旋-环-螺旋亮氨酸拉链,该结构域具有结合DNA特异调节序列并激活转录功能;羧基端可与该复合物形成有利于固醇对SREBP活性调节。因此,羧基末端又被称为羧基调节区。SREBPs属于C-myc转录因子家族。刚合成的SREBPs是以其前体形式(分子量为125KDa)结合在内质网膜上,并与SCAP结合成复合物。当细胞内固醇水平降低时,STEBP前体-SCAP复合物就会向高尔基复合体移动,在那里有Site-1和Site-2蛋白酶。SREBP前体经连续2次水解后,释放出氨基末端部分,即SREBP(分子量为68KDa),接着SREBP进入细胞核,形成同源二聚体后可结合到SRE上,从而激活基因转录。当细胞内胆固醇浓度增高时,SCAP会回到内质网上并结合SREBP前体,从而停止转录。因此,认为SCAP是感受细胞内固醇水平的感受器,是调节基因转录的“开关”。胆固醇调控基因表达途径实际上复杂得多。如SRE-1并不能单独刺激LDL受体的基因转录,要求在SRE-1附近必须有SP1结合点。因此,SREBP-1和SP1发挥协同作用,激活LDL受体启动子,以便开始转录。同样HMG-CoA合成酶,在其SRE-1附近也要求有其他辅助因子结合位点,共同调节基因转录。(2)实际意义:体内胆固醇来源,一是从食物中摄取,二是体内生物合成。体外摄取胆固醇关键控制点是LDL受体;受体生物合成关键控制点是HMG-CoA还原酶和HMG-CoA合成酶。胆固醇对上述3个蛋白基因表达调节途径已基本清楚。因此,其实际意义在于为控制体内胆固醇水平,不仅可对LDL受体进行阻断、抑制HMG-CoA还原酶核HMG-CoA合成酶的活性,而且可在基因表达调控中间环节进行控制。如使用SCAP、Site-1核Site-2蛋白酶、SREBP、SP1抑制剂,同样降低胆固醇水平,增加了对高胆固醇血症防治的手段。3.脂肪酸对基因表达调节 饮食脂肪是所有生物生长和发育重要营养素。除作为功能物质和构成生物膜成分外,饮食脂肪还可通过对基因表达影响,对代谢、生长发育及细胞分化发挥重要调控作用。实际上,这种调控作用是脂肪水解变成脂肪酸后发挥作用。尤其是n-3核n-6系列多不饱和脂肪酸(PUFA)与基因调节关系最为密切。脂肪被肝脂酶和脂蛋白酶水解后产生游离脂肪酸,通过细胞膜转运载体,如与脂肪酸结合蛋白(fatty acid-binding protein ,FABP)、脂肪酸转位酶,56-KD肾脂肪酸结合蛋白、脂肪酸转运蛋白等结合后进入细胞。细胞内大多数脂肪酸与蛋白质,如FABP以非共价键形式结合;部分经脂酰辅酶A(FA-CoA)合成酶催化成FA-CoA,部分仍是游离形式。FA-CoA和游离脂肪酸在细胞内浓度虽很低,通常<10μΜ/g,但却是发挥调节基因表达的主要形式。30多年前就发现n-6系列十八碳二烯酸可抑制肝内脂肪合成,但在相当长时间内,一直认为脂肪酸对基因表达调节是通过改变细胞膜脂中脂肪酸构成,从而影响细胞膜激素受体信号传导发挥作用。后来研究发现PUFA在数分钟内就能调节基因转录,发挥作用时间如此短,不能只用膜成分改变和改变激素释放或信号传导来解释。1990年克隆了过氧化物酶体增殖剂激活受体(peroxisome proliferators activated receptor ,PPAR)1992年发现脂肪酸可活化PPAR,而PPAR作为核受体又是调节基因转录的转录因子。随后发现脂肪酸可活化其他某些转录因子,如肝核因子4a、核因子κB(nuclear factor κB ,NFκB和SREBPLc。因此,脂肪酸可与细胞膜受体发生作用,还可通过与细胞内转录因子相互作用,而调节基因表达。(1)脂肪酸调节基因表达机制:摄入脂肪酸类型、数量和持续时间决定不同的生理作用。如大鼠摄入含>45%总能量的饱和脂肪饲料,几周后能增加血甘油三酯并致胰岛素抵抗肥胖和高血压,将饱和脂肪酸换成长链n-3 PUFA饮食,将能改善上述代谢紊乱和症状。鉴于n-3和n-6 PUTA 对人体有益,在此重点介绍PUFA对基因表达调节。PUFA能抑制生脂基因包括脂肪酸合成酶(fatty acid synthetase ,FAS)、肝葡萄糖转移酶、丙酮酸脱氢酶、乙酰CoA羧激酶、硬脂酰辅酶A去饱和酶、S14蛋白,这些基因参与脂酶、微粒体酰基CoA氧化酶、脂肪酸结合蛋白、脂肪酸转运蛋白、脂酰基CoA合成酶及解偶联蛋白-3(uncouplingprotein-3 ,UCP-3)等,这些基因编码蛋白参与脂质氧化和能量生成反应。脂肪酸调节基因表达机制包括:1)G蛋白关联细胞表面受体途径:脂肪酸在线粒体和微粒体发生多步骤氧化反应,产生花生四稀酸、前列腺素、血栓素和白三稀等,这些生物活性物质可通过自分泌和旁分泌作用于细胞表面G蛋白关联受体,活化G蛋白使细胞内cAMP和钙离子浓度发生改变,作为第二信使活化信号机制,使转录因子功能上调。2)PPAR途径:存在不同亚型,分别为PPARα、PPARδ及PPARγ1和PPARγ2。有3种独立的基因编码3种不同的PPAR(α、δ、γ)。PPARγ1和PPARγ2来自同一基因,因PPARγ基因有2个启动子,按照上游转录其始点不同,又通过不同剪接,产生PPARγ1和PPARγ2。这些不同亚型又统称为PPARs。PPARs的结构与类固醇-甲状腺超级基因核受体家族成员相似,能被过氧化物酶体增殖剂如氯贝酸、萘酚平、WY14643等激活,故被称为过氧化物酶体增殖剂激活受体(PPARs)。PPARs不同亚型在组织中分布不同,且受不同配体激活,因此,有不同生理功能。如PPARα在肝、心肌、肾近端小管和肠细胞表达;PPARδ比PPARa表达范围广;PPARγ在脂肪、脾、肾、造血细胞,结肠、前列腺和乳腺上皮细胞表达,可诱导细胞分化。据PPARs开放阅框推测出氨基酸序列表明,其结构有激素受体特征,即1个配体结合区和1个锌指DNA结合区。配体结合区是与脂肪酸等配体结合部分,配体结合区是与脂肪酸等配体结合部分,配体与受体这种结合可活化受体(即PPARs);DNA结合区是与脂肪酸等配体结合部分,配体与受体这种特异性结合,调节基因转录。已发现编码许多酶,如微粒体酰基辅酶A氧化酶、肉碱软脂酰转移酶、脂酰CoA合成酶、线粒体HMG-CoA合成酶、脂蛋白脂肪酶和脂肪酸结合蛋白的基因上都存在PPARs反应元件(PPAR-REs)。PPAR-REs特征是5"端侧翼区有1个直接重复序列1(direct receptor ,RXR)形成异源二聚体,共同作用于PPAR-REs。当PPARs与RXR形成异源二聚体时,可增加PPARs与PPAR-REs结合能力。另外,PPARs与PPAR-REs结合,还需要类固醇受体辅助激活剂-1(steroid receptor co-activator-1,SRC-1)和PPAR-结合蛋白(PPAR-binding protein ,PBP)等辅助激活因子共同参与。3)其他转录因子途径:脂肪酸还可通过调节HNF4a、NFκB和SREBP1c等转录因子活性调节基因表达。(2)实际意义:研究脂肪酸对基因表达调节,拓宽对脂肪酸生理功能认识。从最初认识脂肪酸是供能物质和生物膜重要组成部分,到发现脂肪酸可通过细胞膜受体信号途径和转录因子活化途径,具有调节基因表达的功能。通过对脂肪酸特异调节转录因子的不断发现,进一步认识脂肪酸其他重要功能,如不饱和脂肪酸有抑制脂类物质合成、降低血甘油三酯和胆固醇、增加葡萄糖利用、增强胰岛素敏感性及改善胰岛素抵抗的作用。不饱和脂肪酸还有诱导细胞增殖和分化作用,如抑制早幼粒细胞、白血病HL60细胞增殖;还可启动培养细胞分化为单核细胞和粒细胞,也可以诱导细胞坏死和凋亡。n-3和n-6PUFA均能增加T淋巴细胞系某些抗原表达,而增强免疫功能。PUFA对乳腺癌、结肠癌和前列腺癌有一定抑制作用。但也有相反的报道。因此,尚需进一步研究探讨。可模拟PPARS配体-脂肪酸的结构,合成某些PPARS配体。一大类以脂肪酸结构为基础进行结构变化的化合物,如降脂药(WY14643,吉非诺齐,氟贝丁酯),增塑剂(2-2乙基己基邻苯二甲酸),类固醇、曲格列酮和匹格列酮(Thiazolidinediones,TZD)等均能活化PPARS,而其活化作用比脂肪酸强,可将这些化合物开发为调节血脂和血糖的药物。因此,继续寻找强有力的激活PPARS的天然和人工合成的化合物,将有助于开发防治高血压、糖尿病、动脉粥样硬化、肥胖和癌症的药物。以细胞受体转录因子为靶目标来治疗某种疾病,已成为现代医药工业发展的方向。4.维生素D对基因表达调控 维生素D的主要生物活性形式是1,25-(OH)2-D3,后者有维持钙磷动态平衡、调节骨代谢和促进多种组织细胞生长、分化等多种功能。这些作用大部分是通过活化细胞核内受体,即维生素D受体(vitamin Dreceptor,VDR),进而调节维生素D靶基因转录水平来实现。(1)VDR对基因表达调控机制:VDR是配体激活转录因子,与甲状腺素受体、视黄酸受体、过氧化物酶体增殖剂激活受体等一样,均属于Ⅱ型核受体。VDR可自身形成同源二聚体,也可与类维生素A受体(RXR)形成异源二聚体(VDR-RXR),较短A/B序列中不含AF1;C结构域由2段高度保守“锌指结构”构成,且该结构域还含细胞核定向信号;D结构域即铰合部分主要是调节受体的柔韧性,以改变受体空间构象;E/F结构域是多功能区,包含有配体结合结构域、二聚体表面及C末端(螺旋12)配体依赖活化功能区(AF2)。此外,VDR还有2个磷酸化位点,通过酪蛋白激酶进行正向调节,或蛋白激酶A或C,对其自身功能进行负向调节。当VDR与其配体1,25-(OH)2-D3结合后,致VDR构象改变,并与未结合配体RXR形成异源二聚体(VDR-RXR)。后者再作用与维生素D靶基因启动子区上维生素D反应元件(VDREs),并解释辅助抑制因子复合物,同时募集某些辅助激活因子及普通转录因子,共同形成活性转录复合体。推测在上述时1,25-(OH)2-D3可能是诱导VDREs在其螺旋结构12位置上发生分子内折叠等微小变化,如关闭配体结合“口袋”,同时暴露VDRAF2位点,才能使VDR与辅助激活因子相互作用;同样RXRAF2位点也必须暴露,以便与辅助激活因子相互作用。这些辅助激活因子可称为“搭桥”因子,即将VDR-RXR(已与VDRE结合)与转录起始复合物前体连接起来,并稳定转录起始复合物前体。这些辅助激活因子属类固醇受体辅助激活因子家族,且有或兼有组蛋白-以酰基转移酶活性,可使组蛋白在维生素D靶基因附近就与DNA分离,有利于其进入转录过程。除上述间接作用外,VDR还可通过转录因子ⅡB直接作用于转录起始复合前体,以便进入转录过程。辅助抑制因子可募集组蛋白-脱乙酰基酶,并与类固醇受体结合,使该受体处于失活状态,同时使染色质处于转录抑制状态。视黄酸和甲状腺素受体抑制介质可与VDR-RXR相互作用,从而抑制转录。SUG1是26S的蛋白水解酶,其亚单位可与辅助激伙因子共同竞争结合RXRAF2位点而抑制转录。另外,SUG1可直接降解VDR。其他还有某些因子如Calreticulin(为多功能钙结合蛋白)和翻译调节因子L7,均可与VDR相互作用,阻止其与DNA结合。在核受体蛋白信号调节途径中,辅助激活因子和辅助抑制因子复合物平衡,决定DNA转录是开始还是关闭。(2)实际意义:通过维生素D调节基因表达研究,除了解维生素D传统功能作用机制外,还发现维生素D调节许多基因表达,并有许多新功能。1)传统功能中1,25-(OH)2-D3在小肠主要是促进钙磷吸收;在肾促进钙磷酸化及钙重吸收;在骨组织参与骨代谢。现发现上述功能主要是钙结合蛋白(小肠)、钙结合蛋白D28K(肾脏)、骨钙蛋白和骨桥蛋白(骨)等基因有维生素D反应元件,维生素D可对上述基因表达进行调控,从而发挥上述功能。2)在传统靶组织中发现某些新维生素D调节基因,如锁骨-颅骨发育障碍基因的新转录因子Osf2/cbfal,主要调节间质细胞分化为成骨细胞,而1,25-(OH)2-D3可在mRNA水平上明显抑制该过程。对破骨细胞形成研究发现2个新的维生素D调节基因,一是破骨细胞分化因子/骨蛋白整合素配体基因,其表达蛋白属于肿瘤坏死因子家族膜相关成员;二是破骨细胞形成抑制因子/骨蛋白整合素

基因表达合成蛋白质需要内质网高尔基体么

如果在真核生物体内,要的以下是真核细胞合成蛋白质的过程,内质网高尔基体对蛋白质高级结构的形成至关重要。如果是原核生物因为没有细胞器,就不用,有另一套方法。蛋白质合成是生物按照从脱氧核糖核酸 (DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。由于mRNA上的遗传信息是以密码形式存在的,只有合成为蛋白质才能表达出生物性状,因此将蛋白质生物合成比拟为转译或翻译。蛋白质生物合成包括氨基酸的活化及其与专一转移核糖核酸(tRNA)的连接;肽链的合成(包括起始、延伸和终止)和新生肽链加工成为成熟的蛋白质 3大步骤。其中心环节是肽链的合成。蛋白质生物合成需核糖体、mRNA、tRNA、氨酰转移核糖核酸 (氨酰tRNA)合成酶、可溶性蛋白质因子等大约200多种生物大分子协同作用来完成。 蛋白质生物合成过程: 1.氨基酸的活化与搬运:氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨基酰tRNA合成酶催化完成。反应完成后,特异的tRNA3"端CCA上的2"或3"位自由羟基与相应的活化氨基酸以酯键相连接,形成氨基酰tRNA。 2.活化氨基酸的缩合——核蛋白体循环:活化氨基酸在核蛋白体上反复翻译mRNA上的密码并缩合生成多肽链的循环反应过程,称为核蛋白体循环。核蛋白体循环过程可分为三个阶段: ⑴起动阶段:①30S起动复合物的形成。在IF促进下,30S小亚基与mRNA的起动部位,起动tRNA(tRNAfmet),和GTP结合,形成复合体。②70S起动前复合体的形成。IF3从30S起动复合体上脱落,50S大亚基与复合体结合,形成70S起动前复合体。③70S起动复合体的形成。GTP被水解,IF1和IF2从复合物上脱落。 ⑵肽链延长阶段:①进位:与mRNA下一个密码相对应的氨基酰tRNA进入核蛋白体的受位。此步骤需GTP,Mg2+,和EF参与。②成肽:在转肽酶的催化下,将给位上的tRNA所携带的甲酰蛋氨酰基或肽酰基转移到受位上的氨基酰tRNA上,与其α-氨基缩合形成肽键。给位上已失去蛋氨酰基或肽酰基的tRNA从核蛋白上脱落。③移位:核蛋白体向mRNA的3"- 端滑动相当于一个密码的距离,同时使肽酰基tRNA从受体移到给位。此步骤需EF(EFG)、GTP和Mg2+参与。 此时,核蛋白体的受位留空,与下一个密码相对应的氨基酰tRNA即可再进入,重复以上循环过程,使多肽链不断延长。 ⑶肽链终止阶段:核蛋白体沿mRNA链滑动,不断使多肽链延长,直到终止信号进入受位。①识别:RF识别终止密码,进入核蛋白体的受位。②水解:RF使转肽酶变为水解酶,多肽链与tRNA之间的酯键被水解,多肽链释放。③解离:通过水解GTP,使核蛋白体与mRNA分离,tRNA、RF脱落,核蛋白体解离为大、小亚基。 真核生物翻译起始的特点: 1.真核起始甲硫氨酸不需甲酰化。 2.真核mRNA没有S-D序列,但5"端帽子结构与其在核蛋白体就位相关。帽结合蛋白(CBP)可与mRNA帽子结合,促进mRNA与小亚基结合。 3.肽链的延长 :延长阶段为不断循环进行的过程,也称核蛋白体循环。分为进位、成肽和转位三个步骤。 三、多肽链合成后的加工修饰: 1.一级结构的加工修饰: ⑴N端甲酰蛋氨酸或蛋氨酸的切除:N端甲酰蛋氨酸是多肽链合成的起始氨基酸,必须在多肽链折迭成一定的空间结构之前被切除。其过程是:① 去甲酰化;② 去蛋氨酰基。 ⑵氨基酸的修饰:由专一性的酶催化进行修饰,包括糖基化、羟基化、磷酸化、甲酰化等。 ⑶二硫键的形成:由专一性的氧化酶催化,将-SH氧化为-S-S-。 ⑷肽段的切除:由专一性的蛋白酶催化,将部分肽段切除。 2.高级结构的形成: ⑴构象的形成:在分子内伴侣、辅助酶及分子伴侣的协助下,形成特定的空间构象。 ⑵亚基的聚合。 ⑶辅基的连接。 3.靶向输送:蛋白质合成后,定向地被输送到其执行功能的场所称为靶向输送。大多数情况下,被输送的蛋白质分子需穿过膜性结构,才能到达特定的地点。因此,在这些蛋白质分子的氨基端,一般都带有一段疏水的肽段,称为信号肽。分泌型蛋白质的定向输送,就是靠信号肽与胞浆中的信号肽识别粒子(SRP)识别并特异结合,然后再通过SRP与膜上的对接蛋白(DP)识别并结合后,将所携带的蛋白质送出细胞。 信号肽假说:信号肽位于新合成的分泌蛋白N端。对分泌蛋白的靶向运输起决定作用。①细胞内的信号肽识别颗粒(SRP)识别信号肽,使肽链合成暂时停止,SRP引导核蛋白体结合粗面内质网膜;②SRP识别、结合内质网膜上的对接蛋白,水解GTP使SRP分离,多肽链继续延长;③信号肽引导延长多肽进入内质网腔后,经信号肽酶切除。分泌蛋白在高尔基体包装成分泌颗粒出胞。

免疫组化做得是基因表达还是基因突变

基因表达。总的来说,免疫组化,是应用免疫学基本原理——抗原抗体反应,即抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素)显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及定量的研究。这里的抗原是基因翻译成的蛋白类,不一定要突变。希望能有帮助!

乳糖操纵子模型是在哪个环节上调节基因表达

转录水平。根据查询知道题库得知,乳糖操纵子模型是在转录水平上调节基因表达。乳糖操纵子模型是两重调控:乳糖负调控,CAP正调控。

乳糖操纵子是如何控制基因表达的?

乳糖操纵子的正负调控机制:1、乳糖操纵子(lac)是由调节基因(lac I)、启动子(lac P)、操纵基因(lac O)和结构基因(lac Z、lac Y、lac A)组成的。lac I 编码阻遏蛋白,lac Z、lac Y、lac A分别编码β-半乳糖苷酶,β-半乳糖苷透性酶和β-半乳糖苷转乙酰基酶。2、阻遏蛋白的负性调控:当培养基中没有乳糖时,阻遏蛋白结合到操纵子中的操纵基因上,阻止了结构基因的表达。当培养基中有乳糖时,乳糖(真正是异乳糖)分子和阻遏蛋白结合,引起阻遏蛋白构象改变,不能结合到操纵基因上,使RNA聚合酶能正常催化转录操纵子上的结构基因,即操纵子被诱导表达。3、cAMP-CAP是一个重要的正调节物质,可以与操纵上的启动子区结合,启动基因转录。培养基中葡萄糖含量下降,cAMP合成增加,cAMP与CAP形成复合物并与启动子结合,促进乳糖操纵子的表达。4、协调调节:乳糖操纵子调节基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调,互相制约。细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。扩展资料:通过突变的效应是可以将结构基因和调节基因相区别的,结构基因发生突变,细胞中就失去这些基因合成的蛋白。但是调节基因发生突变会影响到它所控制的所有结构基因的表达。调节蛋白的突变的结果可以显示调节的类型。在细菌中是很需要灵活性,也需要很经济,因为细菌遇到合适的环境就大量消耗营养对其本身也是不利的。在缺乏底物时就不必要合成大量相关的酶类,因此细菌产生了一种调节机制,即在缺乏底物时就阻断酶的合成途径,但同时又作好了准备,一旦有底物存在就立即合成这些酶。在细菌中同时存在着诱导和阻遏的现象。诱导是细菌调节其分解底物供给生长的能力。阻遏是细菌调节其合成代谢产物的能力。无论是酶作用的小分子底物的调节,还是酶活性的产生,它们的启动是独自的,小分子底物称为诱导物某些物质能阻止酶合成它们本身。参考资料来源:百度百科 ——乳糖操纵子

以乳糖操纵子为例原核生物基因表达调控的原理

原核生物的基因表达调控 原核生物的基因表达调控虽然比真核生物简单,然而也存在着复杂的调控系统,如在转录调控种就存在着许多问题:如何在复杂的基因组内确定正确的转录起始点?如何将DNA的核苷酸按着遗传密码的程序转录到新生的RNA链中?如何保证合成一条完整的RNA链?如何确定转录的终止? 上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。乳糖操纵子模型1.乳糖操纵子 法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说,现在已成为原核生物基因调控的主要学说之一。大肠杆菌乳糖操纵子包括4类基因:①结构基因,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。LacZ合成β—半乳糖苷酶,lacY合成透过酶,lacA合成乙酰基转移酶。②操纵基因O,控制结构基因的转录速度,位于结构基因的附近,本身不能转录成mRNA。③启动基因P,位于操纵基因的附近,它的作用是发出信号,mRNA合成开始,该基因也不能转录成mRNA。④调节基因i:可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白。操纵基因、启动基因和结构基因共同组成一个单位——操纵子(operon)。调节乳糖催化酶产生的操纵子就称为乳糖操纵子。其调控机制简述如下: 抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 诱导作用:乳糖的存在情况下,乳糖代谢产生别乳糖(alloLactose),别乳糖能和调节基因产生的阻遏蛋白结合,使阻遏蛋白改变构象,不能在和操纵基因结合,失去阻遏作用,结果RNA聚合酶便与启动基因结合,并使结构基因活化,转录出mRNA,翻译出酶蛋白。 负反馈:细胞质中有了β—半乳糖苷酶后,便催化分解乳糖为半乳糖和葡萄糖。乳糖被分解后,又造成了阻遏蛋白与操纵基因结合,使结构基因关闭。

以乳糖操纵子为例简述原核细胞基因表达调控原理。

【答案】:乳糖操纵子的结构:含有一个操纵序列(O)、一个启动序列(P)、在P序列上游有CAP结合位点、三个编码乳糖代谢酶的结构基因(Z、Y、A)和一个调节基因(I)。O、P、CAP结合位点共同构成乳糖操纵子的调控区,三个结构基因构成乳糖操纵子的信息区。I基因转录、翻译生成阻遏蛋白。乳糖操纵子的调节机制:没有乳糖,阻遏蛋白与O结合,阻碍RNA聚合酶与P序列结合,抑制转录的启动。当出现乳糖时,乳糖被酶转运进入细胞,被半乳糖苷酶分解成半乳糖,它与阻遏蛋白结合,使其构象变化,与O序列分离,不能阻止RNA聚合酶P序列的结合。RNA聚合酶与P序列结合并进入转录区进行转录。当没有葡萄糖时,细菌体内cAMP浓度升高,与CAP结合,使其构象变化,与CAP结合位点结合,刺激RAN聚合酶的转录。当没有葡萄糖存在时,细菌体内cAMP浓度降低,与cAP结合受阻,RNA聚合酶的转录下降。协调调节:当阻遏蛋白封闭转录时,CAP对乳糖操纵子不能发挥作用;如果没有CAP,即使阻遏蛋白与操纵序列分离,转录活性仍然很低,可见阻遏蛋白和CAP两者的作用是相辅相成的。

小肽基因合成及其串联体表达载体的构建 基因表达载体的构建

  摘 要:以人表皮生长因子为研究对象,分3段合成了hegf基因片段,运用套叠PCR技术进行连接,形成全长hegf(159 bp)并克隆到酵母表达载体pGAPZα-A中,利用同裂酶技术构建串联体表达载体,获得了分别含2、3、4拷贝的串联体表达载体pGAPZα-2hegf、pGAPZα-3hegf和pGAPZα-4hegf,为下一步进行基因表达及其生物学活性分析奠定了基础。   关键词:hegf基因合成;串联体;载体构建   中图分类号:Q782   文献标识码:A   文章编号:1007-7847(2007)01-0033-05      表皮生长因子最初由Cohen及其同事从小鼠颌下腺分离得到,后在人尿中分离得到,人表皮生长因子(hEGF)是由53个氨基酸组成的小分子多肽,含有3个链内二硫键,结构稳定,研究表明,hEGF具有多种生物学功能,它通过与细胞膜上hEGF受体结合,促使细胞内部发生一系列复杂的生化级联反应而发挥生理作用,如它可促进细胞分裂,修复皮肤创伤、胃肠溃疡、角膜损伤等;防止皮肤衰老,起到美白嫩肤的作用;靶向性结合含高密度hEGF受体的肿瘤组织,大剂量的EGF还能抑制某些癌细胞的生长,商品化的hEGF具有很高的市场价值,且市场需求量大,提高其表达量及生物学活性可广泛用于临床,满足市场的需要。   利用基因重组技术是大量制备活性多肽的有效方法,通常将少于100个氨基酸的肽称为小分子多肽,由于其相对分子质量较小,在体内易被迅速水解,半衰期短,因此在克隆、表达等都会碰到不少困难,本研究利用套叠PCR技术合成了hegf基因,在构建酵母分泌型表达载体时,采取多拷贝串联构建,并在各拷贝间引入kex2蛋白酶切位点,以便在毕赤氏酵母中表达时能切割形成单个的hEGF分子,本研究探索了基因合成方法和小分子多肽表达载体构建策略,为实现小分子多肽在体外的高效表达提供了参考依据,并为hEGF在酵母中串联表达奠定基础。      1 材料与方法      1.1 材料   1.1.1 质粒和菌株   菌株E.coli DH5α由本室保存,菌株ToplOF"、载体pGAPZα-A购自Invitrogen公司,pMD18-T vector购自TaKaRa公司。   1.1.2 生化试剂   Taq聚合酶、T4-DNA连接酶、Xho I、Xba I购自TaKaRa公司,AvaⅢ、Pst I购自Fermentas公司,DNA Maker购自Tiangen公司,UNIQ-10柱式DNA胶回收试剂盒购自生工生物工程(上海)有限公司,其他试剂均为国产分析纯。   1.1.3 基因片段与引物   选用毕赤酵母偏爱密码子,根据NCBI上报道的序列(E02089)分3段合成hegf基因:1)hegf基因片段1(hegfl):aac tcc gac tct gaa tgc ccg ctgtcc cac gat ggt tac tgc ctg cac gac ggc gtt tgt atg;2) hegf2:ctg ccg caa aca tac ata tag ctc cgc gac ctg tttata cgc aca ttg aca cat cat ccg atg;3)hegf3:tgt gta gta ggc tac atc ggc gaa cgc tgc cag tac cgt gac ctg aaatgg tgg gaa ctg cgc;4)引物l(P1):g ctcgag atgcataagaga aac tcc gac tct g;5)引物2(P2):t gta gcc tactac aca gtt ac;6)引物3(P3):t tctaga ctgcag gcg cagttc tea cc.hegf2片段划线部分分别与hegf1和hegf3划线部分互补,引物P1和P3分别引入XhoI和Xba I酶切位点,基因片段及引物均由生工生物工程(上海)有限公司合成。      1.2 方法   1.2.1 套叠PCR连接egf1和egf2基因片段   利用egf1和ear2部分互补及引物P1和P2,在同一个PCR反应中,采用不同的退火温度,先使egf1和egf2延伸,再用P1和P2进行扩增,得到egf1-ear2片段,PCR程序如下:94℃5min;94℃30s,41℃30s,72℃30s,10个循环;94℃30s,53℃30s,72℃30s,25个循环;72℃7min;4℃+∞。   1.2.2 egf3互补链的产生   在P3引物存在下,利用Klenow Fragment在37℃延伸3h,使egf3形成互补链。   1.2.3套叠PCR连接egf1-egf2和egf3片段   利用两个片段的互补及引物P1、P3,如1.2.1采用不同的退火温度扩增得到hegf全长,PCR程序如下:94℃5 min;94℃30s,39℃30s,72℃30s,10个循环;94℃30s,53℃30s,72℃30s,25个循环;72℃7min;4℃+∞。   1.2.4 pGAPZα-hegf的获得   先将hegf克隆到pMD18-T vector并转化DH5α,大量提取质粒后,利用Xho I和Xba I将hegf克隆到pGAPZα-A,并转化Top1OF"。   1.2.5 串联表达载体的构建   利用同裂酶AvaⅢ(ATGCA↓T)和Pst I(cTGCA ↓ G)酶切重新连接后形成ATGCA l G而不再被AvaⅢ和Pst I识别的特点,利用Xho I和AvaⅢ酶切pGAPZα-hEGF回收大片段,用Xho I和Pst I酶切pGAPZα-hegf回收小片段,再用T4-DNA连接酶连接大小片段,构建二拷贝载体pGAPZα-2hegf,同样原理,利用Xho I/AvaⅢ和Xho I/Pst I酶切pGAPZα-2hegf,再用连接酶连接可得到pGAPZα-3hegf和pGAPZα-4hegf。         2 结果      2.1 套叠PCR扩增结果   hegf基因片段在引物P1和P2作用下,采用不同的退火温度,得到egf1-egf2片段(如图3,泳道1),回收产物与egf3延伸产物在P1和P3扩增      2.2 克隆载体构建结果   将hegf基因克隆到pMD18-T vector中,并转化大肠杆菌DH5α,经过菌液PCR鉴定和Xho I、Xba I双酶切鉴定(如图4),得到阳性克隆,并选择一个阳性克隆送至宝生物工程(大连)有限公司进行测序分析,结果显示序列与预定序列一致,      2.3 hegr表达载体构建结果 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文   将hegf基因克隆到pGAPZet-A,并转化大肠杆菌Top10F",如2.2进行PCR、酶切鉴定及测序分析,结果显示已经成功构建了pGAPZα.hegf。      2.4 多拷贝表达载体构建结果   分别用Xho I/AvaⅢ和Xho I/Pst I双酶切pGAPZα-hegf,分别回收大片段和小片段,连接大、小片段,可获得pGAPZα-2 hegf;再用Xho I/AvaⅢ和Xho I/Pst I双酶切pGAPZet-2hegf,分别回收大片段和小片段,连接大、小片段,可获得pGAPZα-4hegf,连接第一次回收的大片段和第2次回收的小片段,或第一次回收的小片段和第2次回收的大片段,可得到pGAPZα-3hegf,经过双酶切鉴定(如图5)和表达载体测序分析,结果表明本研究已成功构建了pGAPZα-2begf(324 bp)、pGAPZα-3 hegf(483 bp)和pGAPZα-4 hegf(642bp),为进一步进行基因表达及其生物学活性分析奠定了基础。      3 讨论      本研究运用套叠PCR合成hegf基因时,首先合成了3个片段,正链hegf1和hegf3、负链hegf2.hegf1和hegf2进行套叠PCR后形成hegf1-hegf2,但此回收产物不能直接与hegf3进行第2次套叠PCR,而是需要先用Klenow Frag-ment片段延伸hegt3后才能进行基因的连接,但如在合成片段时,合成正链hegf1、负链begf2和hegt3,则在进行首次套叠PCR后,回收产物可直接与hegf3在引物作用下进行第2次套叠PCR,此外,还可分成偶数段合成,如分成正链hegf1和hegf3、负链hegf2和hegf4四段合成,其中hegf1和hegf2部分互补、hegf2和hegf3部分互补、hegf3和hegf4部分互补,这样分别在两对引物的作用下,可套叠PCR产生hegf1-hegf2、hegf3-begf4片段,回收产物可进行再次PCR,从而得到全长hegf基因,如刘凤华等在合成突变型大肠杆菌二氢叶酸还原酶(DHFR)基因时就采用了四段合成法,在进行套叠PCR时,片段间的互补设计极为重要,一般互补区不宜少于15bp,引物对两条引物尽可能设计成相同的Tm值,采用高保真酶和减少循环次数可减少突变的产生,摸索反应体系也是套叠PCR成功的保证。   对于许多分子较小的多肽,用基因工程方法进行体外表达时,常出现表达量很低的状况,因为小分子多肽相对分子质量小,在细胞中不稳定,易被宿主蛋白酶降解,因此,我们采用多拷贝串联基因的方法,以期提高小分子多肽在宿主菌中的含量,在进行单拷贝酵母表达载体构建时,我们在目的基因的两端分别引入同裂酶AvaⅢ和pstI,同时引入Xho I和Xba I,并在基因5"端前引入kex2蛋白酶切割位点,pGAPZα-A是一组成型分泌表达载体,含有α-factor信号肽,它可使重组蛋白分泌到细胞外,在α-factor信号肽3"端含kex2酶切位点(742-747),在分泌表达时能被kex2酶切割,在其前方含有Xho I限制性酶切位点(736-741),将外源基因引入此Xho I位点,并引入kex2位点,这样在蛋白分泌表达时,信号肽可被切除从而形成天然N端的蛋白,运用AvaⅢ和Xho I、Pst I和Xho 1分别切割载体,回收大、小片段并在T4-DNA连接酶作用下连接形成pGAPZα-2hegf,由于在pGAPZα-hegf表达载体中引入了kex2,从而在pGAPZα-2hegf两hegf基因间也含有kex2,当分泌表达时,在kex2位点处被切割,可形成含天然N端的单体蛋白,同理,运用AvaⅢ和Xho I、Pst I和Xho 1分别切割载体,回收大、小片段并连接可形成pGAPZα-3hegf、pGAPZα-4hegf在分泌表达时自动切割形成单体蛋白,从而增加了蛋白表达量。   多拷贝载体构建有许多方法,如Hartley等采用识别非对称序列的内切酶Ava I,构建了一个含有34个重复123bp鼠DNA片段的载体,但构建过程复杂,对使用的载体有限制,操作成本也比较高,故使用比较少,龚杰万等采用同向串连构建了抗菌肽基因misgurin多拷贝表达载体,将基因分成4个接头和两个片段进行合成,并分别退火前接头(两个)、后接头(两个)和两个基因片段,随后将前接头和基因片段、后接头和基因片段在两个体系中分别进行连接,并在反应中补充基因片段和连接酶,最后将两反应产物混合进行连接反应,从而得到了多拷贝的misgurin基因,栗学清等也用此法构建了抗菌肽Aurein1.2基因多拷贝串联体,杨涛等利用Nhe I、SnaB I和XhoI构建了锯鳞蝰血抑环肽(Ecs)多拷贝表达载体,并利用甲硫氨酸(Met)作为溴化氰的切割位点,将表达的串联产物裂解为单体。   本研究利用同裂酶策略构建了表皮生长因子多拷贝表达载体,有利于其在酵母中表达,引入的kex2切割位点,使表达的蛋白具天然的N端,并可切割形成单体,将有助于提高蛋白表达量,这为进一步研究奠定了基础,同时也为小肽的体外高效表达提供了新思路。      注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

为什么抗菌肽基因不能直接导入受体细胞,而是必须先构建基因表达载体?

如果只导入一个目的基因,进入宿主细胞是不能进行复制表达的,也不能长期保留。所以必须与载体结合,进入宿主细胞后才能与宿主细胞的DNA结合,才能保留和表达。

一个细胞的信号分子为什么不必进入靶细胞就能改变其中的基因表达?

表达的基因是细胞自身的。而信号分子的刺激会由膜表面的糖蛋白接受,并传递给细胞内,引发相应反应。就好像用手碰触开关,灯就会开关一样的道理

从基因到蛋白质要经历哪些过程?对基因表达的调控哪个环节最为重要?哪些环节具

基因调控是现代分子生物学研究的中心课题之一。因为要了解动植物生长发育规律。形态结构特征及生物学功能,就必须搞清楚基因表达调控的时间和空间概念,掌握了基因调控机制,就等于掌握了一把揭示生物学奥秘的钥匙。基因表达调控主要表现在以下几个方面:①转录水平上的调控;②mRNA加工、成熟水平上的调控;③翻译水平上的调控;基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。蛋白质合成翻译阶段的基因调控有三个方面:① 蛋白质合成起始速率的调控;② MRNA的识别;③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。真核生物mRNA的“扫描模式”与蛋白质合成的起始。真核生物蛋白合成起始时,40S核糖体亚基及有关合成起始因子首先与mRNA模板近5"端处结合,然后向3"方向移行,发现AUG起始密码时,与60S亚基形成80S起始复合物,即真核生物蛋白质合成的“扫描模式”。mRNA5"末端的帽子与蛋白质合成的关系。真核生物5"末端可以有3种不同帽子:0型、I 型和 II 型。不同生物的mRAN可有不同的帽子,其差异在于帽子的碱基甲基化程度不同。帽子的结构与mRNA的蛋白质合成速率之间关系密切:① 帽子结构是mRNA前体在细胞核内的稳定因素,也是mRNA在细胞质内的稳定因素,没有帽子的转录产物会很快被核酸酶降解;② 帽子可以促进蛋白质生物合成过程中起始复合物的形成,因此提高了翻译强度;

什么是操纵子(operon)?试说明色氨酸操纵子(Trp operon)在原核基因表达调控中的调控机制和重要作用。

色氨酸操纵子负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。由于trp体系参与生物合成而不是降解,它不受葡萄糖或cAMP-CAP的调控。  色氨酸的合成分5步完成。每个环节需要一种酶,编码这5种酶的基因紧密连锁在一起,被转录在一条多顺反子mRNA上,分别以trpE、trpD、trpC、trpB、trpA代表,编码了邻氨基苯甲酸合成酶、邻氨基苯甲酸焦磷酸转移酶、邻氨基苯甲酸异构酶、色氨酸合成酶和吲哚甘油-3-磷酶合成酶。  trpE基因是第一个被翻译的基因,和trpL和trpa(不是trpA)。trp操纵子中产生阻遏物的基因是trpR,该基因距trp基因簇很远,后者在大肠杆菌染色体图上25min处,而前者则位于90min处。在位于65min处还有一个trpS(色氨酸tRNA合成酶),它和携带有trp的tRNATrp也参与trp操纵子的调控作用。

请举例单个核苷酸突变对基因表达产物结构和功能影响 有急用,

单各核苷酸突变(SNP)的基因表达等会产生如下影响(可能不全): 1,单核苷酸突变位点在起始密码子上,导致基因不能表达 2,开放阅读框间的点突变,导致表达出来蛋白某个氨基酸发生改变,影响表达产物的活性和结构稳定. 3,由于SNP使某个密码子成为终止密码子,表达的蛋白不成熟. 4,SNP与人类的某些疾病密切相关,当然SNP不一定就会对表达产物产生影响,如点突变后的密码子与原密码子为同义.

可逆性的基因表达是什么意思(表观遗传的一大特点)

所谓表观遗传学,就是不改变基因的序列,通过对基因的修饰来调控基因的表达。所以,基因表达的表观遗传学调控,就是通过各种表观遗传的修饰方式来对基因进行调控。目前,已知的表观遗传现象有:DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。

什么是基因表达的表观遗传学调控

所谓表观遗传学,就是不改变基因的序列,通过对基因的修饰来调控基因的表达.所以,基因表达的表观遗传学调控,就是通过各种表观遗传的修饰方式来对基因进行调控.目前,已知的表观遗传现象有:DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等.

真核生物基因表达调控中的表观遗传修饰有哪些类型?如何影响基因表达

谓表观遗传学,核仁显性,就是通过各种表观遗传的修饰方式来对基因进行调控.所以,基因组印记(genomic impriting),已知的表观遗传现象有,就是不改变基因的序列,基因表达的表观遗传学调控:DNA甲基化(DNA methylation).目前,通过对基因的修饰来调控基因的表达,母体效应(maternal effects),基因沉默(gene silencing),休眠转座子激活和RNA编辑(RNA editing)等.

下调基因表达的常用方法是?

蛋白泛素化修饰或者用siRNA(或shRNA)干涉处理。DNA和染色体水平:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化。转录水平调控:转录起始、延伸、终止均有影响。原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控。转录后水平调控:真核生物原初转录产物经过加工成为成熟的mRNA,包括加帽、加尾、甲基化修饰等。扩展资料:首先要构建增进转录的载体;为使克隆的目的基因得到有效的表达,必须将目的基因置于强的启动子控制之下:应用乳糖启动子,色氨酸启动子,λ噬菌体左向转录启动子等构建了较为理想的载体。通过修饰调整使目的基因处于正确转译相位。调节SD序列与转译起始位点之间的距离,使克隆基因最有效地表达。除了以大肠杆菌作为表达外源基因的宿主外,在枯草杆菌中也表达产生了乙型肝炎病毒核心抗原、口蹄疫病毒的主要抗原、人的β干扰素以及分泌型的人胰岛素原C肽。参考资料来源:百度百科-基因表达方法

基因载体与基因表达载体的区别?

一、构成不同基因表达载体:构成包括启动子、终止子、标记基因、目的基因。重组质粒:构成包括目的基因片段、质粒、酶。二、对象不同基因表达载体:基因表达载体的对象通常是活细胞。重组质粒:重组质粒的对象通常是细菌。三、原理不同基因表达载体:将不同来源的基因在体外构建杂种DNA分子,然后导入活细胞。重组质粒:用限制性内切酶切割质粒DNA和目的DNA片段, 在体外使两者相连接, 得到重组质粒。扩展资料一、基因表达载体分为两大类:1、病毒载体病毒载体主要包括慢病毒、腺病毒、逆转录病毒、腺相关病毒等。2、非病毒载体非病毒载体主要包括裸露DNA、脂质体、纳米载体等。二、基因表达载体的过程过程包括:过表达质粒选择、目的基因获取、引物设计、过表达质粒构建。在进行基因过表达过程中,可以选择不同的过表达载体。过表达载体与克隆载体比较而言,加入一些与表达调控有关的元件即成为表达载体。参考资料来源:百度百科-基因表达载体百度百科-重组质粒

蛋白质抑制基因表达,luciferase结果是什么样

蛋白质抑制基因表达,luciferase结果是什么样RNA干扰的分子抑制机制的三种方式及原理转录抑制 与RNAi有关的dsRNA及蛋白质可参与染色质的修饰作用,使其中的组蛋白和DNA发生甲基化作用,使相应基因不能被转录,从而导致受阻基因不能表达。这种在转录水平上阻断基因功能,使基因沉默的RNAi方式被称为转录基因沉默(Transcriptional gene silencing,TGS)。这种现象先在植物中得到证实,但是在哺乳动物中是否存在仍有争议。2004年Svoboda等研究表明,在小鼠卵母细胞中,通过RNAi引起靶基因表达沉默的长dsRNA不能引起相应DNA区域从头合成DNA的甲基化。Morris等也于同年得出实验结论,针对内源基因启动子的siRNA能够引起其区域内CG岛以及组蛋白H3K9的甲基化,从而在转录水平抑制基因的表达。转录后抑制不同来源的dsRNA通过各种转基因技术转入植物、线虫或哺乳动物细胞内,、被切割产生siRNA片断,再由合成的RISC切割靶mRNA从而阻断基因表达。这种基因能正常转录成mRNA,但mRNA因被降解使基因功能被阻断,这种RNAi方式叫做转录后沉默(Post transcriptional gene silencing,PTGS)。siRNA对靶mRNA降解具有序列特异性,只能引起同源mRNA降解,如果siRNA与mRNA有一个bp不配对,RNAi作用就极大降低,如果两者有4个bp不配对,就不能产生RNAi。翻译抑制 Grishok等在研究RNAi时,发现在细胞中在细胞中存在内源性小片段单链RNA(ssRNA),其长度也在21~25 nt之间,这种ssRNA可与mRNA的3′非翻译区(3′UTR)特异性地结合,从而抑制mRNA的翻译和相应的功能蛋白质合成。这种小片段的ssRNA叫做stRNA(small temporal RNA)。ssRNA的形成是因为当RNA的大小为70~80 nt时,容易形成双链的茎环状结构,其双链茎的长度正好在21~25 nt之间,这样的双链结构易被Dicer酶识别并切割成stRNA,由stRNA抑制翻译。这种方式的RNAi也作用于转录后形成的mRNA,它在调节生物细胞内基因的表达、自身的发育方面起着重要的作用。

为什么基因敲除会导致基因表达量下降

基因敲除,顾名思义就是把基因移除,一个细胞里面,这个基因都没有了,当然是不能能表达这个基因多代表的蛋白。当然,每一个基因有许多个转录本,有的时候我们以为敲除了这个基因,但其实只是打靶到了这个基因的某个/些转录本,并没有打靶全部转录本。这样的话,有可能会出现基因还有表达的情况出现。这种情况下,可以使用红棉系统设计自己感兴趣的基因的敲除方案,红棉会把上述情况考虑进去的。

基因表达量多少克视为基因敲除成功

24 基因敲除科学家运用基因工程删除了猪细胞中的对人产生排斥的基因,培育成可以用于人类进行器官如心脏移植的“基因敲除猪”.从变异角度来看,这种变异是x0dA、基因重组 B、染色体变异 C、基因突变 D、不遗传变异x0d25、科学家用纳米技术制造出一种“生物导弹”,可以携带DNA分子.把它注射入组织中,可以通过细胞的内吞作用的方式进入细胞内,DNA被释放出来,进入到细胞核内,最终整合到细胞染色体中,成为细胞基因组的一部分,DNA整合到细胞染色体中的过程,属于x0dA.基因突变 B.基因重组 C.基因互换 D.染色体变异

为什么基因敲除会导致基因表达量下降

基因敲除是将细胞基因组中某基因去除或使基因失去活性的技术。去除原核生物细胞、真核生物的生殖细胞、体细胞或干细胞基因组中的基因等。广义的基因敲除包括某个或某些基因的完全敲除、部分敲除、基因调控序列的敲除以及成段基因组序列的敲除。常用同源重组的方法。敲除的基因用以观察生物或细胞的表型变化,是研究基因功能的重要手段。

重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是什么?

1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。2.常用的转化方法:将目的基因导入植物细胞:采用最多的方法是 农杆菌转化法,其次还有 基因枪法和 花粉管通道法等。将目的基因导入动物细胞:最常用的方法是 显微注射技术。此方法的受体细胞多是 受精卵。将目的基因导入...3.重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是标记基因是否表达。第四步:目的基因的检测和表达

将目的基因导入动物细胞 (1)方法: 注射技术。 (2)操作程序:目的基因表达载体

(1)构建基因表达载体:在构建基因表达载体时常要用到限制酶、DNA连接酶两种工具酶.如果目的基因要在乳腺细胞中表达,基因表达载体构建时要将目的基因与乳腺蛋白基因的启动子、标记基因和终止子等组件重组在一起.标记基因具有鉴定目的基因是否导入受体细胞并将含有目的基因的细胞筛选出来. (2)为了获得足够数量的受精卵,先利用促性腺激素刺激供体雌性鼠超数排卵.雌鼠经过交配,将受精卵从输卵管中取出. (3)通常采用显微注射技术将目的基因导入受精卵. (4)早期胚胎培养的培养液成分一般比较复杂,除一些无机盐和有机盐外,还需要添加维生素、激素、氨基酸、核苷酸等营养成分,以及动物血清等物质.当胚胎培养到适宜的阶段时,可进行胚胎移植. (5)在胚胎移植前要对接受胚胎的受体进行发情处理.移植后,还要对受体雌鼠进行妊娠检查. (6)经过一段时间妊娠后,产下一群小鼠,为了检测哪些是转基因鼠,可以用发射性同位素标记目的基因制作探针,进行DNA分子杂交检测. 故答案为: (1)限制酶、DNA连接酶 乳腺蛋白基因 鉴定目的基因是否导入受体细胞并将含有目的基因的细胞筛选出来ue003 (2)促性腺激素 (3)显微注射 (4)动物血清ue003 (5)同期发情ue003 (6)放射性同位素等标记目的基因

基因表达的转录过程

在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录(transcription)。在双链DNA中,作为转录模板的链称为模板链(template strand)或反义链(antisense strand);而不作为转录模板的链称为编码链(coding strand)或有义链(sense strand),编码链与模板链互补,它与转录产物的差异仅在于DNA中的胸腺嘧啶(T)变为RNA中的尿嘧啶(U)。在含许多基因的DNA双链中,每个基因的模板链并不总是在同一条链上,亦即可作为某些基因模板链的一条链,同时也可以是另外一些基因的编码链。转录后要进行加工,转录后的加工包括: 几乎全部的真核 mRNA 端都具“帽子”结构。虽然真核生物的mRNA的转录以嘌呤核苷酸三磷酸(pppAG或pppG)领头,但在5"端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7GpppAGpNp)。mRNA 5"端的这种结构称为帽子(cap)。不同真核生物的mRNA具有不同的帽子。mRNA的帽结构功能:①能被核糖体小亚基识别,促使mRNA和核糖体的结合;②m7Gppp结构能有效地封闭RNA 5"末端,以保护mRNA免疫5"核酸外切酶的降解,增强mRNA的稳定性。 (postranslational processing):从核糖体上释放出来的多肽需要进一步加工修饰才能形成具有生物活性的蛋白质。翻译后的肽链加工包括肽链切断,某些氨基酸的羟基化、磷酸化、乙酰化、糖基化等。真核生物在新生手肽链翻译后将甲硫氨酸裂解掉。有一类基因的翻译产物前体含有多种氨基酸顺序,可以切断为不同的蛋白质或肽,称为多蛋白质(polyprotein)。例如胰岛素(insulin)是先合成86个氨基酸的初级翻译产物,称为胰岛素原(proinsulin),胰岛素原包括A、B、C三段,经过加工,切去其中无活性的C肽段,并在A肽和B肽之间形成二硫键,这样才得到由51个氨基酸组成的有活性的胰岛素。

基因转录、翻译和基因表达的区别

一、指代不同1、基因转录:以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。2、翻译:是根据遗传密码的中心法则,将成熟的信使RNA分子(由DNA通过转录而生成)中“碱基的排列顺序”(核苷酸序列)解码,并生成对应的特定氨基酸序列的过程。3、基因表达:将来自基因的遗传信息合成功能性基因产物的过程。二、过程不同1、基因转录:转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。2、翻译:主要在细胞质内的核糖体中进行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下与特定的转运RNA结合并被带到核糖体上。生成的多肽链(即氨基酸链)需要通过正确折叠形成蛋白质,许多蛋白质在翻译结束后还需要在内质网上进行翻译后修饰才能具有真正的生物学活性。3、基因表达:由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。三、作用不同1、基因转录:是起调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。2、翻译:是中心法则中一个不可或缺的过程,对生物机体的性能有着不可或缺的作用。3、基因表达:利用基因表达来合成生命的大分子。参考资料来源:百度百科-基因表达参考资料来源:百度百科-翻译参考资料来源:百度百科-基因转录

基因转录、翻译和基因表达的区别

一、指代不同1、基因转录:以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。2、翻译:是根据遗传密码的中心法则,将成熟的信使RNA分子(由DNA通过转录而生成)中“碱基的排列顺序”(核苷酸序列)解码,并生成对应的特定氨基酸序列的过程。3、基因表达:将来自基因的遗传信息合成功能性基因产物的过程。二、过程不同1、基因转录:转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。2、翻译:主要在细胞质内的核糖体中进行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下与特定的转运RNA结合并被带到核糖体上。生成的多肽链(即氨基酸链)需要通过正确折叠形成蛋白质,许多蛋白质在翻译结束后还需要在内质网上进行翻译后修饰才能具有真正的生物学活性。3、基因表达:由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。三、作用不同1、基因转录:是起调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。2、翻译:是中心法则中一个不可或缺的过程,对生物机体的性能有着不可或缺的作用。3、基因表达:利用基因表达来合成生命的大分子。参考资料来源:搜狗百科-基因表达参考资料来源:搜狗百科-翻译参考资料来源:搜狗百科-基因转录

基因转录、翻译和基因表达的区别

一、指代不同1、基因转录:以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。2、翻译:是根据遗传密码的中心法则,将成熟的信使RNA分子(由DNA通过转录而生成)中“碱基的排列顺序”(核苷酸序列)解码,并生成对应的特定氨基酸序列的过程。3、基因表达:将来自基因的遗传信息合成功能性基因产物的过程。二、过程不同1、基因转录:转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。2、翻译:主要在细胞质内的核糖体中进行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下与特定的转运RNA结合并被带到核糖体上。生成的多肽链(即氨基酸链)需要通过正确折叠形成蛋白质,许多蛋白质在翻译结束后还需要在内质网上进行翻译后修饰才能具有真正的生物学活性。3、基因表达:由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。三、作用不同1、基因转录:是起调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。2、翻译:是中心法则中一个不可或缺的过程,对生物机体的性能有着不可或缺的作用。3、基因表达:利用基因表达来合成生命的大分子。参考资料来源:百度百科-基因表达参考资料来源:百度百科-翻译参考资料来源:百度百科-基因转录

真核基因表达及调控不需要A转录因子B衰减子C启动子D沉默子E增强子

衰减子(attenuator):细菌E.coli的trp操纵子中第一个结构基因与启动序列P之间有一衰减子区域。Trp操纵子的序列1中有两个色氨酸密码子,当色氨酸浓度很高时,核蛋白体(核糖体)很快通过编码序列1,并封闭序列2,这种与转录偶联进行的翻译过程导致序列3、4形成一个不依赖ρ(rho)因子的终止结构---衰减子。(转录衰减是原核生物特有的调控机制)。故选择B

作为基因表达的重要调节原件,增强子通常具有什么特征

  特征  ①增强子提高同一条DNA链上基因转录效率,可以远距离起作用,通常可距离1-4kb、个别情况下离开所调控的基因30kb仍能发挥作用,而且在基 因的上游或下游都能起作用。  ]②增强子的作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。而将启动子倒置就不能起作用,可见增强子与启动子是很不相同的。  ③增强子要有启动子才能发挥作用,没有启动子存在,增强子不能表现活性。但增强子对启动子没有严格的专一性,同一增强子可以影响不同类型启动子的转 录。例如当含有增强子的病毒基因组整合入宿主细胞基因组时,可能够增强整合区附近宿主某些基因的转录;当增强子随某些染色体段落移位时,也能提高移到的新 位置周围基因的转录。使某些癌基因转录表达增强,可能是肿瘤发生的因素之一。  ④增强子的作用机理虽然还不明确,但与其他顺式调控元件一样,必须与特定的蛋白质因子结合后才能发挥增强转录的作用。增强子一般具有组织或细胞特异 性,许多增强子只在某些细胞或组织中表现活性,是由这些细胞或组织中具有特异性蛋白质因子所决定的。

增强子和绝缘子在基因表达调控中的作用和特点有哪些

特征 ①增强子提高同一条DNA链上基因转录效率,可以远距离起作用,通常可距离1-4kb、个别情况下离开所调控的基因30kb仍能发挥作用,而且在基 因的上游或下游都能起作用。 ]②增强子的作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。

为什么慢病毒抑制基因表达后mrna明显下降,但是蛋白表达却没有变化

a、dna的甲基化和组蛋白的乙酰化不一定引起基因沉默,a错误;b、增强子是通过启动子来增加转录的,有效的增强子可以位于基因的5′端,也可位于基因的3′端,有的还可位于基因的内含子中,所以增强子不一定位于所有基因的上游,b正确;c、转录因子是一群能与基因5′端上游特定序列专一性结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子,c错误;d、细胞的分化是基因选择性表达,所以通常不发生重编程,d错误.

基因表达谱?

基因表达谱(gene expression profile),指通过构建处于某一特定状态下的细胞或组织的非偏性cDNA文库,大规模cDNA测序,收集cDNA序列片段、定性、定量分析其mRNA群体组成,从而描绘该特定细胞或组织在特定状态下的基因表达种类和丰度信息,这样编制成的数据表就称为基因表达谱

10X 3‘和5’基因表达文库有何不同?

关于10X 公司3‘和5"基因表达文库的差异,官方给出的解释如下: 这两者很相似,但在最终的文库中,捕获的是不同的多聚腺苷酸化转录本末端。两种方案都使用了polydT引物用于反转录,但在3‘方案中polydT序列位于凝胶珠oligo上,而在5‘方案中polydT则作为反转录的引物。在这两种方案中,都用到了一种模板转换引物(template switching oligo,TSO),目的是为了反转录全长转录本。 经过cDNA扩增后,分子在偏好300-400bp长度片段的条件下被随机片段化。片段化后,只有同时包含10X Barcode和Illumina Read 2的接头(它们在片段化后被连接于cDNAs上)的那些转录本,才会在Sample Index PCR过程中被扩增。因此,在最终的文库中,或者体现为3‘末端的转录本(因10X Barcode邻近转录本3‘末端的polyA尾),或者体现为5‘末端的转录本(因10X Barcode邻近转录本5"末端和TSO)。 下列示意图比较了两种方案的文库构建。请注意不同的单细胞3‘试剂盒版本(V2和V3)其文库构建是类似的,但V3的UMI更长。所需的测序循环数亦有不同。单细胞3‘V3 基因表达文库:单细胞3‘ V2基因表达文库:单细胞5‘ 基因表达文库:

请教关于构建cdna文库载体的问题 我需要能将导入的基因表达为蛋白的表达载体

建库的话随便找个T载体就可以了,只要方便测序就好,至于要实现原核表达的话我个人建议您还是在完成测序后将表达框分离(PCR也好、酶切也好),连接到原核表达载体,我个人推荐使用IPTG诱导、含有组氨酸标签的表达载体,这样也方便后期的纯化工作等。当然如果想直接在普通的大肠杆菌中表达也是可以的,比如前一段时间我搞土壤DNA文库时就是直接将文库在含有筛选剂的极限培养基上筛,获得的克隆直接测序,得到了一个基因,当然其表达框前面不远处就是一个35BP的原核启动子,之后就将这个启动子加上个AGGAGG以及GFP基因的上游18bp序列做引物(上游刚好59bp再多一个都不是1.2元每个碱基了),下游直接是GFP下游引物验证了一下功能。肯定能用的。你也可以试着这样原核表达。不过很冒风险。

基因表达载体中的目的基因可不可以是CDNA文库的

cDNA以mRNA为模板,基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得到细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA。

基因表达载体和重组质粒的区别

很难从概念上去严格区分。个人认为可以从是否含有目的基因这一点上去区别,表达载体一般指的是空载体,而重组质粒指的是插入目的基因后的重组载体。

基因表达载体和重组质粒的区别

一、构成不同基因表达载体:构成包括启动子、终止子、标记基因、目的基因。重组质粒:构成包括目的基因片段、质粒、酶。二、对象不同基因表达载体:基因表达载体的对象通常是活细胞。重组质粒:重组质粒的对象通常是细菌。三、原理不同基因表达载体:将不同来源的基因在体外构建杂种DNA分子,然后导入活细胞。重组质粒:用限制性内切酶切割质粒DNA和目的DNA片段, 在体外使两者相连接, 得到重组质粒。扩展资料一、基因表达载体分为两大类:1、病毒载体病毒载体主要包括慢病毒、腺病毒、逆转录病毒、腺相关病毒等。2、非病毒载体非病毒载体主要包括裸露DNA、脂质体、纳米载体等。二、基因表达载体的过程过程包括:过表达质粒选择、目的基因获取、引物设计、过表达质粒构建。在进行基因过表达过程中,可以选择不同的过表达载体。过表达载体与克隆载体比较而言,加入一些与表达调控有关的元件即成为表达载体。参考资料来源:百度百科-基因表达载体百度百科-重组质粒

重组质粒表达蛋白时质粒上的基因是否也表达了呢?所说的目的蛋白就是,目的基因表达的蛋白吗?

质粒存在细菌和真菌里,当提到取质粒基因用DNA剪切酶作用后得到的DNA序列段再与目的基因与DNA黏合酶作用下得到目的质粒基因,培养后植入发酵菌细胞中.发酵后就可以提取产物. 质粒上原有的基因也会表达,重组后的基因也会表达,目的蛋白和原有质粒基因蛋白、目的基因质粒基因蛋白.三者混合在一起,要进行筛选(筛选方法自然很多)得到目的蛋白质.

说明构建文库时和作基因表达时应如何选择分子克隆载体和宿主菌细胞

你问的这个问题比较难回答, 将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类. cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞.每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布.特点是: ①有些生物,如RNA病毒没有DNA,只能用cDNA克隆; ②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息; ③cDNA能在细菌中表达.cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息. 1.方法: (1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA. (2)载体DNA的选择: ①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb).在细胞中以游离超螺旋状存在,很容易制备.质粒DNA可通过转化引入寄主菌.在细胞中有两种状态,一是“紧密型”;二是“松驰型”.此外还应具有分子量小,易转化,有一至多个选择标记的特点.质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆. ②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端.中间是非必需区,进行改造后组建一系列具有不同特点的载体分子.λ载体系统最适用于构建真核生物基因文库和cDNA库. M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌.M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒.寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交. ③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子.是噬菌体-质粒混合物.此类载体分子容量大,可携带45kb的外源DNA片段.也能象一般质粒一样携带小片段DNA,直接转化寄主菌.这类载体常被用来构建高等生物基因文库. (3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端.在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端.②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端.平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接.④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端. 连接反应需注意载体DNA与DNA片段的比率.以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳.以质粒为载体时,形成环状分子,比率常为1∶1. (4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难.②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高.

说明构建文库时和作基因表达时应如何选择分子克隆载体和宿主菌细胞

你问的这个问题比较难回答,以下希望对你有帮助 将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类。 cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞。每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布。特点是:①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;③cDNA能在细菌中表达。cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。1.方法:(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。 M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。 连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。

举例说明干细胞分化过程中基因表达的调节

郭晓东等 研究表明转化生长因子β1(TGF-β1)基因转染对间充质干细胞(MSCs)增殖、向成软骨方向定向分化等生物学行为的影响;TGF-β1促进MSCs增殖并调控其向成软骨方向定向分化、抑制多种炎性介质生物学活性以保护关节软骨。

原核基因转录调节与原核基因表达调控的区别

相同点:转录起始是基因表达调控的关键环节2.不同点:A.原核基因的表达调控主要包括转录和翻译水平ue007真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次B.原核基因表达调控主要为负调控,真核主要为正调控C.原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性ue007真核基因转录起始需要基础特异两类转录因子ue007依赖DNA-蛋白质、蛋白质-蛋白质相互作用ue007调控转录激活D.原核基因表达调控主要采用操纵子模型ue007转录出多顺反子RNAue007实现协调调节ue007真核基因转录产物为单顺反子RNAue007功能相关蛋白的协调表达机制更为复杂。真核生物基因表达调控的环节主要在转录水平ue007其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子ue007与RNA聚合酶结合ue007、阻遏蛋白ue007负调控ue007、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性ue007不稳定(5"端和3"端的发夹结构可保护不被酶水解mRNA的5"端与核糖体结合ue007可明显提高稳定性)、翻译产物及小分子RNA的调控作用。真核生物基因表达的调控环节较多ue007在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。在翻译水平有影响起始翻译的阻遏蛋白、5"AUG、5"端非编码区长度、mRNA的稳定性调节及小分子RNA。真核基因调控中最重要的环节是基因转录ue007真核生物基因表达需要转录因子、启动子、沉默子和增强子。

生理学理论指导:调控基因突变对结构基因表达的影响

- 所有细胞都是全能核(携带全部遗传信息,但不是全部基因都有活性,所以必定有一种抑制某些基因活笥和启动另一些基因活性的机制。对于基因调控机制1961年Jacob与Monod对大肠杆菌的研究提出了乳糖操纵子假说,认为基因的作用单位是操纵了(operon),它由一个操纵基因和相邻的结构基因构成,它们按一定的线性顺序排列,并产生一系列相关的酶。操纵基因可以启动全组结构基因的活性,但它又被调节基因激活或抑制。调节基因能合成一种物质(阻遏物),能抑制操纵基因,当调节基因起作用时,有关的结构基因不合成蛋白质,只有在阻遏物被一种特殊代谢物(诱导物)灭活后,调节基因在关闭的情况下,结构基因才起作用。真核细胞的基因调控还未完全阐明。   如果这一模式能应用在人类,即假设有不止缺乏一种相关酶的那些遗传病,有可能是由于调控系统基因突变的结果。又如有些酶活性缺乏或增加,或蛋白质合成量有改变,但从结构基因水平并未发现有任何碱基改变,这样推测突变可能发生调控基因部分,例如腺苷脱氨酶遗传性酶活性过高(相当于正常45~70倍)可引起溶血,但该突变酶结构没有改变,而转录的mRNA大大增多,故认为是调控基因突变的结果。又如Crigler-Najjar综合征Ⅱ型,表现为先天性黄疸,为肝葡萄糖醛酰转移酶缺乏,血中非结合胆红素增高。如用苯巴比妥可诱导此酶活性升高,黄疸消失,故认为此病可能是调节失控所致。

植物激素能否调控细胞的基因表达

植物激素通过调控基因的表达而实现其作用。作用的分子机制可能是:植物激素与受体结合,通过信号传递,激活反式作用因子并作用于激素调控基因的顺式作用区,调节基因的转录和翻译。

真核基因DNA重排对基因表达的调控

基因重排调节基因活性的典型例子是免疫球蛋白结构基因和T细胞受体基因的表达,前者是有B淋巴细胞合成的,而后者则由T淋巴细胞合成。免疫球蛋白的肽链主要由可变区(V区)、恒定区(C区)以及两者之间的连接区(J区)组成,V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞发育分化时通过染色体内DNA重组把4个相隔较远的基因片段连接在一起,从而产生了具有表达活性的免疫球蛋白基因。

真核生物基因表达的dna水平调控包括什么方式

1、转录起始水平。这一环节是调控的最主要环节,由对基因转录活性的调控来完成,包括基因的空间结构、折叠状态、DNA上的调控序列、与调控因子的相互作用等。a.活化染色质:在真核生物体内,RNApol与启动子的结合受染色质结构的限制,需通过染色质重塑来活化转录。常态下,组蛋白可使DNA链形成核小体结构而抑制其转录,转录因子若与转录区结合则基因具有转录活性。因而基础水平的转录是限制性的,核小体的解散时必要前提,组蛋白与转录因子之间的竞争结果可以决定是否转录。组蛋白的抑制能力可因其乙酰化而降低。另外,由于端粒位置效应或中心粒的缘故,抑或是收到一些蛋白的调控,真核生物细胞可能出现10%的异染色质,异染色质空间上压缩紧密,不利于转录。b.活化基因:真核生物编码蛋白的基因含启动子元件和增强子元件(启动子:在DNA分子中,RNA聚合酶能够识别、结合并导致转录起始的序列。增强子:指能使与它连锁的基因转录频率明显增加的DNA序列。),转录因子与启动子元件相互作用调节基因表达;转录激活因子与增强子元件相互作用,再通过与结合在启动子元件上的转录因子相互作用来激活转录。两种元件以相同的机制作用于转录。真核生物RNApol对启动子亲和力很小或没有,转录起始依赖于多个转变路激活因子的作用,而若干个调节蛋白与特定DNA序列的结合大大提高了活化的精确度,无疑是这一作用机制的一大优势。在这一作用中,增强子与适当的调节蛋白作用以增加临近启动子的转录是没有方向性的,典型的增强子可以出现在转录起始位点上游或下游。RNApol与启动子的结合一般需要三种蛋白质的作用,即基础转录因子(又名通用转录因子)、转录激活因子和辅激活因子。能直接或间接地识别或结合在各类顺式作用元件上,参与调控靶基因转录的蛋白质又名转录因子。基础转录因子与RNApol结合成全酶复合物并结合到启动子上,转录激活因子可以以二聚体或多聚体的形式结合到DNA靶位点上,远距离或近距离作用域启动子。在远距离作用时,往往还会有绝缘子参与,以阻断邻近的增强子对非想关基因的激活;在近距离作用时,结构转录因子可以改变DNA调控区的形状,使其他蛋白质相互作用、激活转录。2、转录后水平。真核生物mRNA前体须经过5"-加帽、3"-加尾以及拼接过程、内部碱基修饰才能成为成熟度的mRNA,加帽位点与加尾位点、拼接点的选择就成了调控的手段。a.5"-加帽:几乎所有的真核生物和病毒mRNA的5"端都具有帽子结构,其作用为保护mRNA免遭5"外切酶降解、为mRNA的核输出提供转运信号和提高翻译模板的稳定性和翻译效率。实验证实,对于通过滑动搜索起始的转录过程来说,mRNA的翻译活性依赖于5"端的帽子结构。b.3"-加尾:3"UTR序列及结构调节mRNA稳定性和寿命

原核基因表达调控的最基本环节是

基因表达调控是生物体内基因表达的调节控制,使细胞中基因表达的过程在时间、空间上处于有序状态,并对环境条件的变化作出反应的复杂过程。基因表达的调控可在多个层次上进行,包括基因水平、转录水平、转录后水平、翻译水平和翻译后水平的调控。基因表达调控是生物体内细胞分化、形态发生和个体发育的分子基础。[1]

基因表达的调控主要包括那几个方面?

蛋白泛素化修饰或者用siRNA(或shRNA)干涉处理。DNA和染色体水平:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化。转录水平调控:转录起始、延伸、终止均有影响。原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控。转录后水平调控:真核生物原初转录产物经过加工成为成熟的mRNA,包括加帽、加尾、甲基化修饰等。扩展资料:首先要构建增进转录的载体;为使克隆的目的基因得到有效的表达,必须将目的基因置于强的启动子控制之下:应用乳糖启动子,色氨酸启动子,λ噬菌体左向转录启动子等构建了较为理想的载体。通过修饰调整使目的基因处于正确转译相位。调节SD序列与转译起始位点之间的距离,使克隆基因最有效地表达。除了以大肠杆菌作为表达外源基因的宿主外,在枯草杆菌中也表达产生了乙型肝炎病毒核心抗原、口蹄疫病毒的主要抗原、人的β干扰素以及分泌型的人胰岛素原C肽。参考资料来源:百度百科-基因表达方法

原核生物基因表达调控大的调节机制有哪些类型

上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。 法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说。大肠杆菌乳糖操纵子包括4类基因:①结构基因,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。LacZ合成β—半乳糖苷酶,lacY合成透过酶,lacA合成乙酰基转移酶。②操纵基因O,控制结构基因的转录速度,位于结构基因的附近,本身不能转录成mRNA。③启动基因P,位于操纵基因的附近,它的作用是发出信号,mRNA合成开始,该基因也不能转录成mRNA。④调节基因i:可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白。操纵基因、启动基因和结构基因共同组成一个单位——操纵子(operon)。

基因结构与基因表达调控之间有什么关系

基因结构与基因表达调控之间有什么关系  真核生物基因表达调控与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征时能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常的生理功能。真核生物基因表达调控据其性质可分为两大类:第一类是瞬时调控或叫可逆调控,相当于原核生物对环境条件变化所做出的反应。瞬时调控包括某种代谢底物浓度或激素水平升降时及细胞周期在不同阶段中酶活性和浓度调节。第二类是发育调节或称不可逆调控,这是真核生物基因表达调控的精髓,因为它决定了真核生物细胞分化,生长,和发育的全过程。据基因调控在同一时间中发生的先后次序,又可将其分为转录水平调控,转录后的水平调控,翻译水平调控及蛋白质加工水平的调控,研究基因调控应回答下面三个主要问题:①什么是诱发基因转录的信号? ②基因调控主要是在那个环节(模板DNA转录,mRNA的成熟或蛋白质合成)实现的?③不同水平基因调控的分子机制是什么?  回答上述这三个问题是相当困难的,这是因为真核细胞基因组DNA含量比原核细胞多,而且在染色体上除DNA外还含有蛋白质,RNA等,在真核细胞中,转录和翻译两个过程分别是在两个彼此分开的区域:细胞核和细胞质中进行。 一条成熟的mRNA链只能翻译出一条多肽链;真核细胞DNA与组蛋白及大量非组蛋白相结合,只有小部分DNA是裸露的;而且高等真核细胞内DNA中很大部分是不转录的;真核生物能够有序的根据生长发育阶段的需要进行DNA片段重排,并能根据需要增加细胞内某些基因的拷贝数等。尽管难度很大,科学家们还是建立起多个调控模型。  转录水平的调控  Britten和Davidson于1969年提出的真核生物单拷贝基因转录调控的模型——Britten—Davidson模型。该模型认为在整合基因的5"端连接着一段具有高度专一性的DNA序列,称之为传感基因。在传感基因上有该基因编码的传感蛋白。外来信号分子和传感蛋白结合相互作用形成复合物。该复合物作用于和它相邻的综合基因组,亦称受体基因,而转录产生mRNA,后者翻译成激活蛋白。这些激活蛋白能识别位于结构基因(SG) 前面的受体序列并作用于受体序列,从而使结构基因转录翻译。  若许多结构基因的临近位置上同时具有相同的受体基因,那么这些基因就会受某种激活因子的控制而表达,这些基因即属于一个组(set),如果有几个不同的受体基因与一个结构基因相邻接,他们能被不同的因子所激活,那么该结构基因就会在不同的情况下表达,若一个传感基因可以控制几个整合基因,那么一种信号分子即可通过一个相应的传感基因激活几组的基因。故可把一个传感基因所控制的全部基因归属为一套。如果一种整合基因重复出现在不同的套中,那么同一组基因也可以属于不同套。  染色质结构对转录调控的影响  真核细胞中染色质分为两部分,一部分为固缩状态,如间期细胞着丝粒区、端粒、次溢痕,染色体臂的某些节段部分的重复序列和巴氏小体均不能表达,通常把该部分称为异染色质。与异染色质相反的是活化的常染色质。真核基因的活跃转录是在常染色质进行的。转录发生之前,常染色质往往在特定区域被解旋或松弛,形成自由DNA,这种变化可能包括核小体结构的消除或改变,DNA本身局部结构的变化,如双螺旋的局部去超螺旋或松弛、DNA从右旋变为左旋,这些变化可导致结构基因暴露,RNA聚合酶能够发生作用,促进了这些转录因子与启动区DNA的结合,导致基因转录,实验证明,这些活跃的DNA首先释放出两种非组蛋白,(这两种非组蛋白与染色质结合较松弛),非组蛋白是造成活跃表达基因对核算酶高度敏感的因素之一。  更多的科学家已经认识到,转录水平调控是大多数功能蛋白编码基因表达调控的主要步骤。关于这一调控机制,现有两种假说。一种假说认为,真核基因与原核基因相同,均拥有直接作用在RNA聚合酶上或聚合酶竞争DNA结合区的转录因子,第二种假说认为,转录调控是通过各种转录因子及反式作用蛋白对特定DNA位点的结合与脱离引起染色质构象的变化来实现的。真核生物DNA严密的染色质结构及其在核小体上的超螺旋结构,决定了真核基因表达与DNA高级结构变化之间的必然联系。DNA链的松弛和解旋是真核基因起始mRNA合成的先决条件。  转录后水平的调控  真核生物基因转录在细胞核内进行,而翻译则在细胞质中进行。在转录过程中真核基因有插入序列,结构基因被分割成不同的片段,因此转录后的基因调控是真核生物基因表达调控的一个重要方面,首要的是RNA的加工、成熟。各种基因转录产物RNA,无论rRNA、tRNA还是mRNA,必须经过转录后的加工才能成为有活性的分子。  翻译水平上的调控  蛋白质合成翻译阶段的基因调控有三个方面:① 蛋白质合成起始速率的调控;② MRNA的识别;③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。  真核生物mRNA的“扫描模式”与蛋白质合成的起始。真核生物蛋白合成起始时,40S核糖体亚基及有关合成起始因子首先与mRNA模板近5"端处结合,然后向3"方向移行,发现AUG起始密码时,与60S亚基形成80S起始复合物,即真核生物蛋白质合成的“扫描模式”。  mRNA5"末端的帽子与蛋白质合成的关系。真核生物5"末端可以有3种不同帽子:0型、I 型和 II 型。不同生物的mRAN可有不同的帽子,其差异在于帽子的碱基甲基化程度不同。帽子的结构与mRNA的蛋白质合成速率之间关系密切:① 帽子结构是mRNA前体在细胞核内的稳定因素,也是mRNA在细胞质内的稳定因素,没有帽子的转录产物会很快被核酸酶降解;② 帽子可以促进蛋白质生物合成过程中起始复合物的形成,因此提高了翻译强度;③ 没有甲基化(m7G)的帽子(如GPPPN-)以及用化学或酶学方法脱去帽子的mRNA,其翻译活性明显下降。  mRNA的先导序列可能是翻译起始调控中的识别机制。可溶性蛋白因子的修饰对翻译也起着重要的调控作用。

原核生物基因表达调控大的调节机制有哪些类型?

上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说。大肠杆菌乳糖操纵子包括4类基因:①结构基因,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。LacZ合成β—半乳糖苷酶,lacY合成透过酶,lacA合成乙酰基转移酶。②操纵基因O,控制结构基因的转录速度,位于结构基因的附近,本身不能转录成mRNA。③启动基因P,位于操纵基因的附近,它的作用是发出信号,mRNA合成开始,该基因也不能转录成mRNA。④调节基因i:可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白。操纵基因、启动基因和结构基因共同组成一个单位——操纵子(operon)。

生物体调节基因表达的最根本目的是()

生物体调节基因表达的最根本目的是() A.调节物资代谢B.维持生长发育C.适应生存环境D.促使生物进化E.以上均不是正确答案:C

基因表达调控主要是什么水平的调控

基因表达调控主要是分子水平上的调控。在一个生物体中,任何细胞都带有同样的遗传信息,带有同样的基因,但是,一个基因在不同组织、不同细胞中的表现并不一样,这是由基因调控机制所决定的。基因表达调控是生物体内细胞分化、形态发生和个体发育的分子基础。扩展资料基因表达调控主要表现在几个方面:1、染色质水平上的调控。基因转录前染色质结构需要发生一系列重要变化,这是基因转录的前提,活化的基因处于染色质的伸展状态之中,可以被转录,而非活化的染色质DNA不能被转录。2、转录水平上的表达调控,这是最主要的基因调控方式。转录水平调控的重点是在特定组织或细胞中、在特定的生长发育阶段、在特定的机体内外条件下,选择特定基因进行转录表达。3、转录后调控,这是指基因转录起始后对转录产物进行的一系列修饰、加工等调控行为,主要包括提前终止转录过程,对mRNA前体进行加工剪切,mRNA通过核孔和在细胞质内定位等。4、翻译水平上的调控,这是基因表达调控的重要环节。翻译的速率和细胞生长的速度之间是密切协调的。在肽链合成的起始、延伸和终止三个阶段中,对翻译起始速率的调控是最重要的,而在翻译的延伸和终止阶段也存在着调控因素。5、蛋白质活性的调节。来自mRNA的遗传信息翻译成蛋白质后,这些蛋白质如何活化并发挥其生物学功能,涉及蛋白质合成后的加工问题。参考资料来源:百度百科--基因表达调控

基因表达调控的主要环节是

基因表达调控的主要环节是转录的起始。基因表达调控是生物体内基因表达的调节控制,使细胞中基因表达的过程在时间、空间上处于有序状态,并对环境条件的变化作出反应的复杂过程。基因表达的调控可在多个层次上进行,包括基因水平、转录水平、转录后水平、翻译水平和翻译后水平的调控。基因表达调控是生物体内细胞分化、形态发生和个体发育的分子基础。基因调控是现代分子生物学研究的中心课题之一。因为要了解动植物生长发育规律。形态结构特征及生物学功能,就必须搞清楚基因表达调控的时间和空间概念,掌握了基因调控机制,就等于掌握了一把揭示生物学奥秘的钥匙。基因表达调控主要表现在以下几个方面:①转录水平上的调控;②mRNA加工、成熟水平上的调控;③翻译水平上的调控;基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。

为什么说基因表达调控中,转录水平的调控是关键环节

因为基因的表达最终形式是形成蛋白质,然后蛋白质行使各种各样的功能,但在形成蛋白质的过程中需要转录形成mRNA,然后以mRNA为模板形成蛋白质,也是形成最终蛋白质的中介,所以非常关键。转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA聚合酶作为催化剂,合成前体mRNA。扩展资料在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。被选为模板的单链叫模板链,又称无义链;另一条单链叫非模板链,又称编码链、有义链、信息链。DNA上的转录区域称为转录单位(transcription unit)。原核生物的RNA聚合酶分子量很大,通常由5个亚基组成;两个α亚基,β,β′和σ,可写作α2ββ′σ。含有5个亚基的酶叫全酶,失去σ亚基的叫核心酶(α2ββ′)。后来发现,核心酶还有一个亚基ω,因此,核心酶的亚基组成可表示为α2ββ′ω,全酶的亚基组成可以表示为α2ββ′ωσ。核心酶也能催化RNA的合成,但没有固定的起始点,也不能区分双链DNA的信息链与非信息链。σ亚基能识别模板上的信息链和启动子,因而保证转录能从固定的正确位置开始。

原核生物基因表达调控大的调节机制有哪些类型?

染色体到DNA的表观遗传学调控 DNA到mRNA前体的转录调控 mRNA前体到mRNA的调控 mRNA到蛋白的翻译调控 蛋白自身的活性调控

真核生物基因表达调控有哪些环节

  真核生物基因表达调控与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征时能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常的生理功能。真核生物基因表达调控据其性质可分为两大类:第一类是瞬时调控或叫可逆调控,相当于原核生物对环境条件变化所做出的反应。瞬时调控包括某种代谢底物浓度或激素水平升降时及细胞周期在不同阶段中酶活性和浓度调节。第二类是发育调节或称不可逆调控,这是真核生物基因表达调控的精髓,因为它决定了真核生物细胞分化,生长,和发育的全过程。据基因调控在同一时间中发生的先后次序,又可将其分为转录水平调控,转录后的水平调控,翻译水平调控及蛋白质加工水平的调控,研究基因调控应回答下面三个主要问题:①什么是诱发基因转录的信号? ②基因调控主要是在那个环节(模板DNA转录,mRNA的成熟或蛋白质合成)实现的?③不同水平基因调控的分子机制是什么?  回答上述这三个问题是相当困难的,这是因为真核细胞基因组DNA含量比原核细胞多,而且在染色体上除DNA外还含有蛋白质,RNA等,在真核细胞中,转录和翻译两个过程分别是在两个彼此分开的区域:细胞核和细胞质中进行。 一条成熟的mRNA链只能翻译出一条多肽链;真核细胞DNA与组蛋白及大量非组蛋白相结合,只有小部分DNA是裸露的;而且高等真核细胞内DNA中很大部分是不转录的;真核生物能够有序的根据生长发育阶段的需要进行DNA片段重排,并能根据需要增加细胞内某些基因的拷贝数等。尽管难度很大,科学家们还是建立起多个调控模型。  转录水平的调控  Britten和Davidson于1969年提出的真核生物单拷贝基因转录调控的模型——Britten—Davidson模型。该模型认为在整合基因的5"端连接着一段具有高度专一性的DNA序列,称之为传感基因。在传感基因上有该基因编码的传感蛋白。外来信号分子和传感蛋白结合相互作用形成复合物。该复合物作用于和它相邻的综合基因组,亦称受体基因,而转录产生mRNA,后者翻译成激活蛋白。这些激活蛋白能识别位于结构基因(SG) 前面的受体序列并作用于受体序列,从而使结构基因转录翻译。  若许多结构基因的临近位置上同时具有相同的受体基因,那么这些基因就会受某种激活因子的控制而表达,这些基因即属于一个组(set),如果有几个不同的受体基因与一个结构基因相邻接,他们能被不同的因子所激活,那么该结构基因就会在不同的情况下表达,若一个传感基因可以控制几个整合基因,那么一种信号分子即可通过一个相应的传感基因激活几组的基因。故可把一个传感基因所控制的全部基因归属为一套。如果一种整合基因重复出现在不同的套中,那么同一组基因也可以属于不同套。  染色质结构对转录调控的影响  真核细胞中染色质分为两部分,一部分为固缩状态,如间期细胞着丝粒区、端粒、次溢痕,染色体臂的某些节段部分的重复序列和巴氏小体均不能表达,通常把该部分称为异染色质。与异染色质相反的是活化的常染色质。真核基因的活跃转录是在常染色质进行的。转录发生之前,常染色质往往在特定区域被解旋或松弛,形成自由DNA,这种变化可能包括核小体结构的消除或改变,DNA本身局部结构的变化,如双螺旋的局部去超螺旋或松弛、DNA从右旋变为左旋,这些变化可导致结构基因暴露,RNA聚合酶能够发生作用,促进了这些转录因子与启动区DNA的结合,导致基因转录,实验证明,这些活跃的DNA首先释放出两种非组蛋白,(这两种非组蛋白与染色质结合较松弛),非组蛋白是造成活跃表达基因对核算酶高度敏感的因素之一。  更多的科学家已经认识到,转录水平调控是大多数功能蛋白编码基因表达调控的主要步骤。关于这一调控机制,现有两种假说。一种假说认为,真核基因与原核基因相同,均拥有直接作用在RNA聚合酶上或聚合酶竞争DNA结合区的转录因子,第二种假说认为,转录调控是通过各种转录因子及反式作用蛋白对特定DNA位点的结合与脱离引起染色质构象的变化来实现的。真核生物DNA严密的染色质结构及其在核小体上的超螺旋结构,决定了真核基因表达与DNA高级结构变化之间的必然联系。DNA链的松弛和解旋是真核基因起始mRNA合成的先决条件。  转录后水平的调控  真核生物基因转录在细胞核内进行,而翻译则在细胞质中进行。在转录过程中真核基因有插入序列,结构基因被分割成不同的片段,因此转录后的基因调控是真核生物基因表达调控的一个重要方面,首要的是RNA的加工、成熟。各种基因转录产物RNA,无论

基因表达的基本调控点在

【答案】:B转录起始是基因表达的基本调控点。基因表达调控可发生在遗传信息传递过程(DNA→RNA→蛋白质)的任何环节,但在转录水平,尤其是转录起始水平的调节,对基因表达起着重要作用,即转录起始是基因表达的基本调控点。

基因表达调控的基本规律是什么?

过表达,即表达过度,当基因表达(转录)的严格控制被打乱时,基因可能不恰当被“关闭”,或以高速度进行转录。高速转录导致大量mRNA产生,大量蛋白质(protein)产物出现。在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录。在双链DNA中,作为转录模板的链称为模板链或反义链;而不作为转录模板的链称为编码链或有义链,编码链与模板链互补,它与转录产物的差异仅在于DNA中的胸腺嘧啶(T)变为RNA中的尿嘧啶(U)。基因表达包括:转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。在遗传学中,基因表达是基因型产生表型的最基本水平。存储在DNA中的遗传密码通过基因表达得到“翻译”,并且基因表达的特性产生生物体的表型。因此,基因表达的调节对于生物体的发育至关重要。以上内容参考:百度百科-基因表达

【转】基因表达调控

从DNA到蛋白质的过程叫 基因表达 (gene expression),对这个过程的调节即为基因表达调控(regulation of gene expression or gene control)。基因调控是现代分子生物学研究的中心课题之一。因为要了解动植物生长发育规律。形态结构特征及生物学功能,就必须搞清楚基因表达调控的时间和空间概念,掌握了基因调控机制,就等于掌握了一把揭示生物学奥秘的钥匙。 基因表达调控 主要表现在以下几个方面:① 转录水平上的调控;② mRNA加工、成熟水平上的调控;③ 翻译水平上的调控; 基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。 原核生物的基因表达调控虽然比真核生物简单,然而也存在着复杂的调控系统,如在转录调控种就存在着许多问题:如何在复杂的基因组内确定正确的转录起始点?如何将DNA的核苷酸按着遗传密码的程序转录到新生的RNA链中?如何保证合成一条完整的RNA链?如何确定转录的终止? 上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。 法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说,现在已成为原核生物基因调控的主要学说之一。 大肠杆菌乳糖操纵子包括4类基因: ①结构基因 ,能通过转录、翻译使细胞产生一定的酶系统和结构蛋白,这是与生物性状的发育和表型直接相关的基因。乳糖操纵子包含3个结构基因:lacZ、lacY、lacA。LacZ合成β—半乳糖苷酶,lacY合成透过酶,lacA合成乙酰基转移酶。 ②操纵基因O ,控制结构基因的转录速度,位于结构基因的附近,本身不能转录成mRNA。 ③启动基因P ,位于操纵基因的附近,它的作用是发出信号,mRNA合成开始,该基因也不能转录成mRNA。 ④调节基因i :可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白。操纵基因、启动基因和结构基因共同组成一个单位——操纵子(operon)。 调节乳糖催化酶产生的操纵子就称为乳糖操纵子。其调控机制简述如下: 抑制作用:调节基因转录出mRNA,合成阻遏蛋白,因缺少乳糖,阻遏蛋白因其构象能够识别操纵基因并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因也被抑制,结果结构基因不能转录出mRNA,不能翻译酶蛋白。 诱导作用:乳糖的存在情况下,乳糖代谢产生别乳糖(alloLactose),别乳糖能和调节基因产生的阻遏蛋白结合,使阻遏蛋白改变构象,不能在和操纵基因结合,失去阻遏作用,结果RNA聚合酶便与启动基因结合,并使结构基因活化,转录出mRNA,翻译出酶蛋白。 负反馈:细胞质中有了β—半乳糖苷酶后,便催化分解乳糖为半乳糖和葡萄糖。乳糖被分解后,又造成了阻遏蛋白与操纵基因结合,使结构基因关闭。 色氨酸操纵子负责调控色氨酸的生物合成,它的激活与否完全根据培养基中有无色氨酸而定。当培养基中有足够的色氨酸时,该操纵子自动关闭;缺乏色氨酸时,操纵子被打开。色氨酸在这里不是起诱导作用而是阻遏,因而被称作辅阻遏分子,意指能帮助阻遏蛋白发生作用。色氨酸操纵子恰和乳糖操纵子相反。 真核生物基因表达调控与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征时能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常的生理功能。真核生物基因表达调控据其性质可分为两大类: 第一类 是瞬时调控或叫可逆调控,相当于原核生物对环境条件变化所做出的反应。瞬时调控包括某种代谢底物浓度或激素水平升降时及细胞周期在不同阶段中酶活性和浓度调节。 第二类 是发育调节或称不可逆调控,这是真核生物基因表达调控的精髓,因为它决定了真核生物细胞分化,生长,和发育的全过程。据基因调控在同一时间中发生的先后次序,又可将其分为转录水平调控,转录后的水平调控,翻译水平调控及蛋白质加工水平的调控,研究基因调控应回答下面三个主要问题:①什么是诱发基因转录的信号? ②基因调控主要是在那个环节(模板DNA转录,mRNA的成熟或蛋白质合成)实现的?③不同水平基因调控的分子机制是什么? 回答上述这三个问题是相当困难的,这是因为真核细胞基因组DNA含量比原核细胞多,而且在染色体上除DNA外还含有蛋白质,RNA等,在真核细胞中,转录和翻译两个过程分别是在两个彼此分开的区域:细胞核和细胞质中进行。 一条成熟的mRNA链只能翻译出一条多肽链;真核细胞DNA与组蛋白及大量非组蛋白相结合,只有小部分DNA是裸露的;而且高等真核细胞内DNA中很大部分是不转录的;真核生物能够有序的根据生长发育阶段的需要进行DNA片段重排,并能根据需要增加细胞内某些基因的拷贝数等。尽管难度很大,科学家们还是建立起多个调控模型。 Britten和Davidson于1969年提出的真核生物单拷贝基因转录调控的模型——Britten—Davidson模型。该模型认为在整合基因的5"端连接着一段具有高度专一性的DNA序列,称之为传感基因。在传感基因上有该基因编码的传感蛋白。外来信号分子和传感蛋白结合相互作用形成复合物。该复合物作用于和它相邻的综合基因组,亦称受体基因,而转录产生mRNA,后者翻译成激活蛋白。这些激活蛋白能识别位于结构基因(SG) 前面的受体序列并作用于受体序列,从而使结构基因转录翻译。 若许多结构基因的临近位置上同时具有相同的受体基因,那么这些基因就会受某种激活因子的控制而表达,这些基因即属于一个组(set),如果有几个不同的受体基因与一个结构基因相邻接,他们能被不同的因子所激活,那么该结构基因就会在不同的情况下表达,若一个传感基因可以控制几个整合基因,那么一种信号分子即可通过一个相应的传感基因激活几组的基因。故可把一个传感基因所控制的全部基因归属为一套。如果一种整合基因重复出现在不同的套中,那么同一组基因也可以属于不同套。虽然目前验证该模型的正确性困难很多,但真核生物基因组中等重复DNA序列和单拷贝DNA序列的排布形式,说明该模型有其合理型。 真核细胞中染色质分为两部分,一部分为固缩状态,如间期细胞着丝粒区、端粒、次溢痕,染色体臂的某些节段部分的重复序列和巴氏小体均不能表达,通常把该部分称为异染色质。与异染色质相反的是活化的常染色质。真核基因的活跃转录是在常染色质进行的。转录发生之前,常染色质往往在特定区域被解旋或松弛,形成自由DNA,这种变化可能包括核小体结构的消除或改变,DNA本身局部结构的变化,如双螺旋的局部去超螺旋或松弛、DNA从右旋变为左旋,这些变化可导致结构基因暴露,RNA聚合酶能够发生作用,促进了这些转录因子与启动区DNA的结合,导致基因转录,实验证明,这些活跃的DNA首先释放出两种非组蛋白,(这两种非组蛋白与染色质结合较松弛),非组蛋白是造成活跃表达基因对核算酶高度敏感的因素之一。 目前更多的科学家已经认识到,转录水平调控是大多数功能蛋白编码基因表达调控的主要步骤。关于这一调控机制,现有两种假说。一种假说认为,真核基因与原核基因相同,均拥有直接作用在RNA聚合酶上或聚合酶竞争DNA结合区的转录因子,第二种假说认为,转录调控是通过各种转录因子及反式作用蛋白对特定DNA位点的结合与脱离引起染色质构象的变化来实现的。真核生物DNA严密的染色质结构及其在核小体上的超螺旋结构,决定了真核基因表达与DNA高级结构变化之间的必然联系。DNA链的松弛和解旋是真核基因起始MRNA合成的先决条件。 真核生物基因转录在细胞核内进行,而翻译则在细胞质中进行。在转录过程中真核基因有插入序列,结构基因被分割成不同的片段,因此转录后的基因调控是真核生物基因表达调控的一个重要方面,首要的是RNA的加工、成熟。各种基因转录产物RNA,无论rRNA、tRNA还是mRNA,必须经过转录后的加工才能成为有活性的分子。 蛋白质合成翻译阶段的基因调控有三个方面:① 蛋白质合成起始速率的调控;② MRNA的识别;③ 激素等外界因素的影响。蛋白质合成起始反应中要涉及到核糖体、mRNA蛋白质合成起始因子可溶性蛋白及tRNA,这些结构和谐统一才能完成蛋白质的生物合成。mRNA则起着重要的调控功能。 真核生物mRNA的“扫描模式”与蛋白质合成的起始。真核生物蛋白合成起始时,40S核糖体亚基及有关合成起始因子首先与mRNA模板近5"端处结合,然后向3"方向移行,发现AUG起始密码时,与60S亚基形成80S起始复合物,即真核生物蛋白质合成的“扫描模式”。 mRNA5"末端的帽子与蛋白质合成的关系。真核生物5"末端可以有3种不同帽子:0型、I 型和 II 型。不同生物的mRAN可有不同的帽子,其差异在于帽子的碱基甲基化程度不同。帽子的结构与mRNA的蛋白质合成速率之间关系密切: ① 帽子结构是mRNA前体在细胞核内的稳定因素,也是mRNA在细胞质内的稳定因素,没有帽子的转录产物会很快被核酸酶降解; ② 帽子可以促进蛋白质生物合成过程中起始复合物的形成,因此提高了翻译强度; ③ 没有甲基化(m 7 G)的帽子(如GPPPN-)以及用化学或酶学方法脱去帽子的mRNA,其翻译活性明显下降。 mRNA的先导序列可能是翻译起始调控中的识别机制。可溶性蛋白因子的修饰对翻译也起着重要的调控作用。 原文地址: https://www.plob.org/article/4440.html

生物体调节基因表达最根本的目的是

生物体调节基因表达最根本的目的是调节代谢、维持生长、维持分裂、维持分化、适应环境。一、基因表达调控是生物体内基因表达的调节控制,使细胞中基因表达的过程在时间、空间上处于有序状态,并对环境条件的变化作出反应的复杂过程。基因表达的调控可在多个层次上进行,包括基因水平、转录水平、转录后水平、翻译水平和翻译后水平的调控。二、基因调控是现代分子生物学研究的中心课题之一。因为要了解动植物生长发育规律。形态结构特征及生物学功能,就必须搞清楚基因表达调控的时间和空间概念,掌握了基因调控机制,就等于掌握了一把揭示生物学奥秘的钥匙。三、原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。四、基因表达调控主要表现在以下几个方面:转录水平上的调控;mRNA加工、成熟水平上的调控;翻译水平上的调控。生物的调控决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用。

什么是基因表达调控?基因表达调控有什么意义

意义:1.适应环境、维持生长和增殖:生物体赖以生存的外环境是在不断变化的,为了生存,所有活细胞都必须对外环境变化作出适当反应,调节代谢,以适应环境变化。生物体适应环境、调节代谢的能力与蛋白质分子的生物学功能有关。而蛋白质的水平又受基因表达的调控。2.维持个体发育与分化:多细胞生物调节基因的表达除为适应环境外,还有维持组织器官分化、个体发育的功能;当某种基因缺陷或表达异常时,则会出现相应组织或器官的发育异常。

基因表达调控主要是什么水平的调控

是分子水平的调控。  基因表达调控主要表现在以下几个方面:  1、转录水平上的调控;在传感基因上有该基因编码的传感蛋白。外来信号分子和传感蛋白结合相互作用形成复合物。该复合物作用于和它相邻的综合基因组,亦称受体基因,而转录产生mRNA,后者翻译成激活蛋白。这些激活蛋白能识别位于结构基因(SG)前面的受体序列并作用于受体序列,从而使结构基因转录翻译。  2、mRNA加工、成熟水平上的调控;真核生物基因转录在细胞核内进行,而翻译则在细胞质中进行。在转录过程中真核基因有插入序列,结构基因被分割成不同的片段,因此转录后的基因调控是真核生物基因表达调控的一个重要方面,首要的是RNA的加工、成熟。各种基因转录产物RNA,无论rRNA、tRNA还是mRNA,必须经过转录后的加工才能成为有活性的分子。  3、翻译水平上的调控;真核生物mRNA的“扫描模式”与蛋白质合成的起始。真核生物蛋白合成起始时,40S核糖体亚基及有关合成起始因子首先与mRNA模板近5"端处结合,然后向3"方向移行,发现AUG起始密码时,与60S亚基形成80S起始复合物,即真核生物蛋白质合成的“扫描模式”

原核基因转录调节与原核基因表达调控的区别

相同点:转录起始是基因表达调控的关键环节2.不同点:A.原核基因的表达调控主要包括转录和翻译水平ue007真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次B.原核基因表达调控主要为负调控,真核主要为正调控C.原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性ue007真核基因转录起始需要基础特异两类转录因子ue007依赖DNA-蛋白质、蛋白质-蛋白质相互作用ue007调控转录激活D.原核基因表达调控主要采用操纵子模型ue007转录出多顺反子RNAue007实现协调调节ue007真核基因转录产物为单顺反子RNAue007功能相关蛋白的协调表达机制更为复杂。 真核生物基因表达调控的环节主要在转录水平ue007其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子ue007与RNA聚合酶结合ue007、阻遏蛋白ue007负调控ue007、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性ue007不稳定(5"端和3"端的发夹结构可保护不被酶水解mRNA的5"端与核糖体结合ue007可明显提高稳定性)、翻译产物及小分子RNA的调控作用。 真核生物基因表达的调控环节较多ue007在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。在翻译水平有影响起始翻译的阻遏蛋白、5"AUG、5"端非编码区长度、mRNA的稳定性调节及小分子RNA。真核基因调控中最重要的环节是基因转录ue007真核生物基因表达需要转录因子、启动子、沉默子和增强子。

基因表达的外显子

外显子与内含子表达过程中的相对性 从内含子与外显子的定义来看,两者是不能混淆的,但是真核生物的外显子也并非都“显”(编码氨基酸),除了tRNA基因和rRNA基因的外显子完全“不显”之外,几乎全部的结构基因的首尾两外显子都只有部分核苷酸顺序编码氨基酸,还有完全不编码基酸的外显子,如人类G6PD基因的第一外显子核苷酸顺序。已发现一个基因的外显子可以是另一基因的内含子,所这亦然。以小鼠的淀粉酶基因为例,来源于肝的与来源于唾液腺的是同一基因。淀粉酶基因包括4个外显子,肝生成的淀粉酶不保留外显子1,而唾液腺中的淀粉酶则保留了外显子1的50bp顺序,但把外显子2与前后两段内含子一起剪切掉,经过这样剪接,外显子2就变成唾液淀粉酶基因中的内含子。同一基因在不同组织能生成不同的基因产物来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。此外真核生物基因可有一个以一的poly(A)位点,因此能在不同的细胞中产生具有不同3"末端的前mRNA,从而会有不同的剪接方式。由于大多数真核生物基因的转录物是先加poly(A)尾巴,然后再行剪接,因此不同组织、细胞中会有不同的因子干预多聚腺苷酸化作用,最后影响剪接模式。

zdna基因表达的影响

结构基因基因中编码RNA或蛋白质的碱基序列。(1)原核生物结构基因:连续的,RNA合成不需要剪接加工;(2)真核生物结构基因:由外显子(编码序列)和内含子(非编码序列)两部分组成。非结构基因结构基因两侧的一段不编码的DNA片段(即侧翼序列),参与基因表达调控。(1)顺式作用元件:能影响基因表达,但不编码RNA和蛋白质的DNA序列;其中包括:启动子:RNA聚合酶特异性识别结合和启动转录的DNA序列。有方向性,位于转录起始位点上游。上游启动子元件:TATA盒上游的一些特定DNA序列,反式作用因子可与这些元件结合,调控基因的转录效率。反应元件:与被激活的信息分子受体结合,并能调控基因表达的特异DNA序列。增强子:与反式作用因子结合,增强转录活性,在基因任意位置都有效,无方向性。沉默子:基因表达负调控元件,与反式作用因子结合,抑制转录活性。Poly(A)加尾信号:结构基因末端保守的AAUAAA顺序及下游GT或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。(2)反式作用因子:能识别和结合特定的顺式作用元件,并影响基因转录的一类蛋白质或RNA。

DNA甲基化对基因表达的调控机制

DNA甲基化发生于DNA的CpG island (CG序列密集区)。发生甲基化后,那段DNA就可以和甲基化DNA结合蛋白相结合。结合后DNA链发生高度的紧密排列,其他转录因子,RNA合成酶都无法再结合了,所以这段DNA的基因就无法得到表达了。一般研究中所涉及的DNA甲基化主要是指发生在CpG二核苷酸中胞嘧啶上第5位碳原子的甲基化过程,其产物称为5—甲基胞嘧啶(5—mC),是植物、动物等真核生物DNA甲基化的主要形式,也是发现的哺乳动物DNA甲基化的唯一形式。扩展资料由于Dnmtl和Dnmt3基因家族没有针对CpG二核苷酸序列的特异性,人们因此提出了DNA甲基化转移酶发现靶位点的机制。首先,甲基化转移酶并不是同等地接近所有染色体区域。具有染色体重构和DNA螺旋酶活性的蛋白质能调节哺乳动物细胞内DNA甲基化,如SNF2家族2个成员ATRX和Lsh;其次,附件因子(蛋白质、RNA等)能召集DNA甲基化转移酶到特定基因组序列或染色体结构中,如pRB蛋白等能够与Dnmtl作用,在S期晚期将它召集到高度甲基化的异染色质区。参考资料来源:百度百科-DNA甲基化

基因启动子甲基化在基因表达调控和细胞分化中的意义

DNA甲基化在表观遗传学领域还是一个比较热的题目,如果真想很好的了解,可去pubmed找两篇review认真看看.以下是简单的介绍: DNA甲基化是指生物体在DNA甲基转移酶(DNA methyltransferase,DNMT) 的催化下,以S-腺苷甲硫氨酸(SAM) 为甲基供体,将甲基转移到特定的碱基上的过程.DNA甲基化可以发生在腺嘌呤的N -6位、胞嘧啶的N -4位、鸟嘌呤的N -7位或胞嘧啶的C-5位等.但在哺乳动物,DNA甲基化主要发生在5"-CpG-3"的C上,生成5-甲基胞嘧啶(5mC) .人类的CpG以两种形式存在,一种是分散于DNA 中,另一种是CpG结构高度聚集的CpG岛.在正常组织里,70 %~90 %的散在的CpG是被甲基修饰的,而CpG岛则是非甲基化的. 一般来 说,DNA甲基化与基因表达呈负相关.不仅启动子区高甲基化与基因表达呈负相关,基因内部的甲基化与基因表达也存在着弱的负相关,而启动子区低甲基化与转 录活性正相关.因此,DNA甲基化是调控基因表达的重要机制,也是一些遗传病以及肿瘤发生的重要机制. 使DNA甲基化的DNMT有两种:DNMT1, 持续性DNA 甲基转移酶,作用于仅有一条链甲基化的DNA 双链, 使其完全甲基化, 可参与DNA 复制双链中的新合成链的甲基化,DNM T1 可能直接与HDAC (组蛋白去乙酰基转移酶) 联合作用阻断转录;DNMT3a和DNMT3b,从头甲基转移酶, 它们可甲基化CpG, 使其半甲基化, 继而全甲基化.从头甲基转移酶可能参与细胞生长分化调控, 其中DNM T3b在肿瘤基因甲基化中起重要作用.

dna的甲基化对真核基因表达调控有何影响

DNA甲基化是最早发现的修饰途径之一,真核生物中甲基化仅发生于胞嘧啶,即在DNA甲基化转移酶(DNMTs)的作用下的CpG二核苷酸5"端的胞嘧啶转变为5"-甲基胞嘧啶。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。DNA甲基化通常抑制基因表达,去甲基化则诱导了基因重新活化和表达。这种DNA修饰方式在不改变基因序列的前提下实现对基因表达的调控。脊椎动物DNA甲基化状态与生长发育调控及生理状态密切相关,比如在肿瘤发生时,抑癌基因CpG岛以外的CpG序列非甲基化程度增加,CpG岛中的CpG则程高度的甲基化状态,导致抑癌基因表达的下降。 原核生物中甲基化多发生在CCA/TGG和GATC序列;真核生物中DNA甲基化一般发生在CpG位点上;哺乳动物DNA甲基化只发生在CpG岛的胞嘧啶,植物甲基化发生在CpG和CpNpG。甲基化会使胞嘧啶转为5-甲基胞嘧啶,CpG位点在基因组是不常见的,主要密集于接近基因启动子的位置,统称为CpG岛。CpG位点的甲基化可以对基因表现有重要的影响。 哺乳动物中,CpG序列在基因组中出现的频率仅有1%,远低于的其它双核苷酸序列。但在基因组的某些区域中CpG序列密度很高,可以达均值的5倍以上即所谓的CpG岛。通常,CpG岛大约含有500多个碱基,位于基因的启动子区或第一个外显子区。 在哺乳动物基因组中约有4万个CpG岛,而且只有CpG岛的胞嘧啶能够被甲基化。

DNA甲基化对基因表达的调控机制

DNA甲基化发生于DNA的CpG island (CG序列密集区)。发生甲基化后,那段DNA就可以和甲基化DNA结合蛋白相结合。结合后DNA链发生高度的紧密排列,其他转录因子,RNA合成酶都无法再结合了,所以这段DNA的基因就无法得到表达了。一般研究中所涉及的DNA甲基化主要是指发生在CpG二核苷酸中胞嘧啶上第5位碳原子的甲基化过程,其产物称为5—甲基胞嘧啶(5—mC),是植物、动物等真核生物DNA甲基化的主要形式,也是发现的哺乳动物DNA甲基化的唯一形式。扩展资料由于Dnmtl和Dnmt3基因家族没有针对CpG二核苷酸序列的特异性,人们因此提出了DNA甲基化转移酶发现靶位点的机制。首先,甲基化转移酶并不是同等地接近所有染色体区域。具有染色体重构和DNA螺旋酶活性的蛋白质能调节哺乳动物细胞内DNA甲基化,如SNF2家族2个成员ATRX和Lsh;其次,附件因子(蛋白质、RNA等)能召集DNA甲基化转移酶到特定基因组序列或染色体结构中,如pRB蛋白等能够与Dnmtl作用,在S期晚期将它召集到高度甲基化的异染色质区。参考资料来源:百度百科-DNA甲基化

解释基因表达的概念,基因表达有哪些特性

基因(gene,mendelianfactor)是指携带有遗传信息的dna或rna序列,也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变绝大多数会导致疾病,另外的一小部分是非致病突变。非致病突变给自然选择带来了原始材料,使生物可以在自然选择中被选择出最适合自然的个体。

什么是基因表达

基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。差别基因表达(differential gene expression)指细胞分化过程中,奢侈基因按一定顺序表达,表达的基因数约占基因总数的5%~10%。也就是说,某些特定奢侈基因表达的结果生成一种类型的分化细胞,另一组奢侈基因表达的结果导致出现另一类型的分化细胞,这就是基因的差别表达。其本质是开放某些基因,关闭某些基因,导致细胞的分化。满意请采纳,O(∩_∩)O谢谢!

基因表达的特点

特征 ①增强子提高同一条DNA链上基因转录效率,可以远距离起作用,通常可距离1-4kb、个别情况下离开所调控的基因30kb仍能发挥作用,而且在基 因的上游或下游都能起作用。 ]②增强子的作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。

什么是基因表达

基因表达(英语:Geneexpression)是用基因中的信息来合成基因产物的过程。产物通常是蛋白质,但对于非蛋白质编码基因,如转运RNA(tRNA)和小核RNA(snRNA),产物则是RNA。所有已知生物都通过基因表达来生成生命所需的高分子物质。基因表达的过程可分为转录、RNA剪接、翻译、蛋白质的翻译后修饰这几步。基因表达调控控制细胞的结构与功能,同时也是细胞分化、形态发生及生物体的多功能性和适应性的基础。不同的时间、不同的环境,以及不同部位的细胞,或是基因在细胞中的含量差异,皆可能使基因产生不同的表现。基因调节也可以作为进化变化的底物,因为基因表达的时间,位置和数量的控制可以对基因在细胞或多细胞生物体中的功能(作用)具有深远的影响。在遗传学中,基因表达是基因型产生表现型(即可观察的性状)的最基本的层次。扩展资料转录机制转录过程由RNA聚合酶完成,以DNA(黑)作为模板,生成RNA(蓝)。上为编码链,下为模板链基因是编码了遗传信息的DNA片段。基因组DNA由反向平行、相反互补的双链组成,每一条链都有5"端和3"端。对于一个基因而言,这两条链可以分别称为模板链和编码链。以DNA为模板合成RNA副本的过程,就称为转录。转录发生在细胞核中,由RNA聚合酶完成。RNA聚合酶将核苷酸一个个拼接到RNA链上。新生成的RNA与DNA模板链的3"→5"方向互补,而模板链的3"→5"方向本身又与编码链的5"→3"方向互补。因此,生成的RNA与DNA编码链完全相同,除了胸腺嘧啶(T)被替换成了尿嘧啶(U)。比如,DNA编码链上的"ATG"间接转录到RNA非编码链上就变成"AUG"。原核生物中,转录只由一种RNA聚合酶完成,此过程需要一段称为普里布诺盒的DNA序列和σ因子才能开始。真核生物中,转录由三种RNA聚合酶完成,需要启动子和转录因子来启动转录。RNA聚合酶I负责转录核糖体RNA(rRNA)的基因。RNA聚合酶II(PolII)不仅转录所有蛋白质编码基因,还转录一些非编码RNA(如snRNA、snoRNA)。聚合酶遇到终止子后,转录过程即告结束。参考资料来源:百度百科-基因表达

基因表达主要包括哪些过程

第一个过程,转录:以一条DNA链为膜板合成一条mRNA,此过程在细胞核内完成后,mRNA通过核孔进入细胞质第二个过程,翻译:以这条mRNA为膜板,tRNA携带氨基酸与之进行碱基互补配对,然后经脱水缩合,形成一条肽链,该过程在核糖体上进行.肽链再经过旋转缠绕最后形成蛋白质.

基因表达的方式有哪些

基因表达概念:就是基因转录和翻译的过程。基因表达的方式有(1)组成性表达也称基本表达:有些基因产物对生命全过程都是必需或不可少的。这类基因在一个生物个体的几乎所有细胞中持续表达,不易受环境条件的影响,称基本表达,更简单来说,管家基因的表达称为基本表达。(2)诱导:有一些基因对环境信号应答时被激活基因表达产物增加,这种基因表达方式称为诱导。(3)阻遏:有一些基因对环境信号应答时被抑制,基因表达产物水平降低,这种基因表达方式称为阻遏。

基因表达的第一步是什么?

1、复制(duplication)是在分子进化过程中产生新的遗传物质的主要机制。它可以定义为遗传物质的任何复制行为。复制的常见来源包括异位重组、逆转录、异倍性、多倍性和滑链错配等。2、转录(Transcription)是遗传信息从DNA流向RNA的过程。即以双链DNA中的确定的一条链(模板链用于转录,编码链不用于转录)为模板,以A、U、C、G四种核糖核苷酸为原料,在RNA聚合酶催化下合成RNA的过程。3、翻译是蛋白质生物合成(基因表达中的一部分,基因表达还包括转录)过程中的第二步(转录为第一步),翻译是根据遗传密码的中心法则,将成熟的信使RNA分子(由DNA通过转录而生成)中“碱基的排列顺序”(核苷酸序列)解码,并生成对应的特定氨基酸序列的过程。但也有许多转录生成的RNA,如转运RNA(tRNA)、核糖体RNA(rRNA)和小核RNA(snRNA)等并不被翻译为氨基酸序列。转录特点转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA聚合酶作为催化剂,合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。被选为模板的单链叫模板链,又称无义链;另一条单链叫非模板链,又称编码链、有义链、信息链。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。

检测基因表达的方法

主要用探针检测mRNA或用抗体检测出表达的蛋白质(转录水平上对特异mRNA的检测和翻译水平上对特异蛋白质的检测)一、外源基因转录水平的鉴定基因表达分为转录及翻译两阶段,转录是以DNA(基因)为模板生成mRNA的过程,翻译是以mRNA为模板生成蛋白质的过程,检测外源基因的表达就是检测特异mRNA及特异蛋白质的生成。所以基因表达检测分为两个水平。即转录水平上对特异mRNA的检测和翻译水平上对特异蛋白质的检测。转录水平上的检测主要方法是Northern杂交,它是以DNA或RNA为探针,检测RNA链。和Southern杂交相同,Northern杂交包括斑点杂交和印迹杂交。也可用RT-PCR(reversetranscribedPCR)方法检测外源DNA在植物体内的转录表达。其原理是以植物总RNA或mRNA为模板进行反转录,然后再经PCR扩增。如果从细胞总RNA提取物中得到特异的cDNA扩增条带,则表明外源基因实现了转录。此法简单、快速,但对外源基因转录的最后决定,还需与Northern杂交的实验结果结合。二、外源基因表达蛋白的检测表达蛋白的检测方法有三种:1、生化反应检测法:主要通过酶反应来检测;2、免疫学检测法:通过目的蛋白(抗原)与其抗体的特异性结合进行检测,具体方法有Western杂交、酶联免疫吸附法(ELISA)及免疫沉淀法;3、生物学活性的检测。Western杂交是将聚丙烯酰胺凝胶(SDS-PAGE)电泳分离抗原(Antigen)固定在固体支持物上(如硝酸纤维素膜,NC膜)。不同分子量大小的蛋白质在凝胶中迁移率不同,据此可确定特定的抗原存在与否以及相对丰度,或者蛋白质是否遭到降解等。蛋白质电泳后转到NC膜,放在蛋白质(如牛血清蛋白BSA)或奶粉溶液中,温育,以封闭非特异性位点,然后用含有放射性标记或酶标记的特定抗体杂交,抗原-抗体结合,再通过放射性自显影或显色观察。扩展资料外显子与内含子表达过程中的相对性从内含子与外显子的定义来看,两者是不能混淆的,但是真核生物的外显子也并非都“显”(编码氨基酸),除了tRNA基因和rRNA基因的外显子完全“不显”之外,几乎全部的结构基因的首尾两外显子都只有部分核苷酸顺序编码氨基酸,还有完全不编码基酸的外显子,如人类G6PD基因的第一外显子核苷酸顺序。已发现一个基因的外显子可以是另一基因的内含子,所这亦然。以小鼠的淀粉酶基因为例,来源于肝的与来源于唾液腺的是同一基因。淀粉酶基因包括4个外显子,肝生成的淀粉酶不保留外显子1,而唾液腺中的淀粉酶则保留了外显子1的50bp顺序,但把外显子2与前后两段内含子一起剪切掉,经过这样剪接,外显子2就变成唾液淀粉酶基因中的内含子。同一基因在不同组织能生成不同的基因产物来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。此外真核生物基因可有一个以一的poly(A)位点,因此能在不同的细胞中产生具有不同3"末端的前mRNA,从而会有不同的剪接方式。由于大多数真核生物基因的转录物是先加poly(A)尾巴,然后再行剪接,因此不同组织、细胞中会有不同的因子干预多聚腺苷酸化作用,最后影响剪接模式。参考资料来源:百度百科-基因表达

基因表达包括哪两个过程

基因表达包含转录和翻译两个过程。 ⒈转录:以一条DNA链为膜板合成一条mRNA,此过程在细胞核内完成后,mRNA通过核孔进入细胞质; ⒉翻译:以这条mRNA为膜板,tRNA携带氨基酸与之进行碱基互补配对,然后经脱水缩合,形成一条肽链,该过程在核糖体上进行,肽链再经过旋转缠绕最后形成蛋白质。 基因表达是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。同一基因在不同组织能生成不同的基因产物来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。
 1 2  下一页  尾页