生物

DNA图谱 / 问答 / 标签

什么是基因重组,在原核微生物中哪些方式可引起基因重组。

定义:造成基因型变化的核酸的交换过程。包括发生在生物体内(如减数分裂中异源双链的核酸交换)和在体外环境中用人工手段使不同来源DNA重新组合的过程。原核生物的基因重组有转化、转导和接合等方式。受体细胞直接吸收来自供体细胞的DNA片段,并使它整合到自己的基因组中,从而获得供体细胞部分遗传性状的现象,称为转化。通过噬菌体媒介,将供体细胞DNA片段带进受体细胞中,使后者获得前者的部分遗传性状的现象,称为转导。自然界中转导现象较普遍,可能是低等生物进化过程中产生新的基因组合的一种基本方式。供体菌和受体菌的完整细胞经直接接触而传递大段DNA遗传信息的现象,称为接合。细菌和放线菌均有接合现象。高等动植物中的基因重组通常在有性生殖过程中进行,即在性细胞成熟时发生减数分裂时同源染色体的部分遗传物质可实现交换,导致基因重组。基因重组是杂交育种的生物学基础,对生物圈的繁荣昌盛起重要作用,也是基因工程中的关键性内容。基因工程的特点是基因体外重组,即在离体条件下对DNA分子切割并将其与载体DNA分子连接,得到重组DNA。1977年美国科学家首次用重组的人生长激素释放抑制因子基因生产人生长激素释放抑制因子获得成功。此后,运用基因重组技术生产医药上重要的药物以及在农牧业育种等领域中取得了很多成果,预计下世纪在生产治疗心血管病、镇痛和清除血栓等药物方面基因重组技术将发挥更大的作用。

原核微生物的基因重组有几种方式?各是什么

原核微生物中,自然发生的基因重组方式主要有结合、转导、转化和原生质融合等方式.真核微生物中有有性杂交、准性杂交、酵母菌2mm质粒转移等等.  还有人为的基因重组方式,主要是基因工程

高一人教版生物必修二知识总结

分离、自由组合定律和伴性遗传的计算题,减数分裂过程(各时期染色体数目及形态变化),DNA 复制,转录和蛋白质的翻译过程。(互补配对和密码子)单倍体和多倍体培育原理基因工程步骤和各种工具(酶,载体)突变,地理隔离,生殖隔离生物多样性原因(这些是比较大的知识点)

什么是基因重组,在原核微生物中哪些方式可引起基因重组。

定义:造成基因型变化的核酸的交换过程。包括发生在生物体内(如减数分裂中异源双链的核酸交换)和在体外环境中用人工手段使不同来源DNA重新组合的过程。 原核生物的基因重组有转化、转导和接合等方式。受体细胞直接吸收来自供体细胞的DNA片段,并使它整合到自己的基因组中,从而获得供体细胞部分遗传性状的现象,称为转化。通过噬菌体媒介,将供体细胞DNA片段带进受体细胞中,使后者获得前者的部分遗传性状的现象,称为转导。自然界中转导现象较普遍,可能是低等生物进化过程中产生新的基因组合的一种基本方式。供体菌和受体菌的完整细胞经直接接触而传递大段DNA遗传信息的现象,称为接合。细菌和放线菌均有接合现象。高等动植物中的基因重组通常在有性生殖过程中进行,即在性细胞成熟时发生减数分裂时同源染色体的部分遗传物质可实现交换,导致基因重组。基因重组是杂交育种的生物学基础,对生物圈的繁荣昌盛起重要作用,也是基因工程中的关键性内容。基因工程的特点是基因体外重组,即在离体条件下对DNA分子切割并将其与载体DNA分子连接,得到重组DNA。1977年美国科学家首次用重组的人生长激素释放抑制因子基因生产人生长激素释放抑制因子获得成功。此后,运用基因重组技术生产医药上重要的药物以及在农牧业育种等领域中取得了很多成果,预计下世纪在生产治疗心血管病、镇痛和清除血栓等药物方面基因重组技术将发挥更大的作用。

生物基因研究的意义

对以下领域有意义应用领域生产领域人们可以利用基因技术,生产转基因食品。例如,科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥的能力。但是,转基因因为有高科技含量, 有些人怕吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动,喝了转基因牛奶后易患恋乳症等等。实际上这些担心都是不必要的,人们吃的所有食物都来自于其他生物体,几乎所有食物中都含有不计其数的带有异源基因的DNA,这些DNA分子在消化道类会被降解为单个的脱氧核糖核苷酸,才能被人体吸收用于自身遗传物质的构建。华中农业大学的张启发院士认为:“转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障。生命科学基础知识的科普和公众教育十分重要。”军事领域生物武器已经使用了很长的时间.细菌,毒气都令人为之色变。但是,传说中的基因武器却更加令人胆寒。环境保护我们可以针对一些破坏生态平衡的动植物,研制出专门的基因药物,既能高效的杀死它们,又不会对其他生物造成影响,还能节省成本。例如一直危害我国淡水区域的水葫芦,如果有一种基因产品能够高效杀灭的话,那每年就可以节省几十亿了。科学是一把双刃剑,基因工程也不例外。我们要发挥基因工程中能造福人类的部分,抑止它的害处。医疗方面随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。所谓基因治疗是指用基因工程的技术方法,将正常的基因转入病患者的细胞中,以取代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象。 第一例基因治疗是美国在1990年进行的。当时,两个4岁和9岁的小女孩由于体内腺苷脱氨酶缺乏而患了严重的联合免疫缺陷症。科学家对她们进行了基因治疗并取得了成功。这一开创性的工作标志着基因治疗已经从实验研究过渡到临床实验。1991年,我国首例B型血友病的基因治疗临床实验也获得了成功。基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。科学家们正在研究的是胎儿基因疗法。如果实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿,从而从根本上提高后代的健康水平。基因工程药物基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。在这方面的研究具有十分诱人的前景。基因工程药物研究的开发重点是从蛋白质类药物,如胰岛素、人生长激素、促红细胞生成素等的分子蛋白质,转移到寻找较小分子蛋白质药物。这是因为蛋白质的分子一般都比较大,不容易穿过细胞膜,因而影响其药理作用的发挥,而小分子药物在这方面就具有明显的优越性。另一方面对疾病的治疗思路也开阔了,从单纯的用药发展到用基因工程技术或基因本身作为治疗手段。还有一个需要引起大家注意的问题,就是许多过去被征服的传染病,由于细菌产生了耐药性,又卷土重来。其中最值得引起注意的是结核病。据世界卫生组织报道,现已出现全球肺结核病危机。本来即将被消灭的结核病又死灰复燃,而且出现了多种耐药结核病。据统计,全世界现有17.22亿人感染了结核病菌,每年有900万新结核病人,约300万人死于结核病,相当于每10秒钟就有一人死于结核病。科学家还指出,在今后的一段时间里,会有数以百计的感染细菌性疾病的人将无药可治,同时病毒性疾病日益曾多,防不胜防。不过与此同时,科学家们也探索了对付的办法,他们在人体、昆虫和植物种子中找到一些小分子的抗微生物多肽,它们的分子量小于4000,仅有30多个氨基酸,具有强烈的广普杀伤病原微生物的活力,对细菌、病菌、真菌等病原微生物能产生较强的杀伤作用,有可能成为新一代的“超级抗生素”。除了用它来开发新的抗生素外,这类小分子多肽还可以在农业上用于培育抗病作物的新品种。农作物培育科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前。这场新的绿色革命的一个显著特点就是生物技术、农业、食品和医药行业将融合到一起。本世纪五、六十年代,由于杂交品种推广、化肥使用量增加以及灌溉面积的扩大,农作物产量成倍提高,这就是大家所说的“绿色革命”。但一些研究人员认为,这些方法已很难再使农作物产量有进一步的大幅度提高。基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。 基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。虽然第一批基因工程农作物品种才开始上市,但美国种植的玉米、大豆和棉花中的一半将使用利用基因工程培育的种子。据估计,今后5年内,美国基因工程农产品和食品的市场规模将从的40亿美元扩大到200亿美元,20年后达到750亿美元。有的专家预计,“到下世纪初,很可能美国的每一种食品中都含有一点基因工程的成分。”尽管还有不少人、特别是欧洲国家消费者对转基因农产品心存疑虑,但是专家们指出,利用基因工程改良农作物已势在必行。这首先是由于全球人口的压力不断增加。专家们估计,今后40年内,全球的人口将比增加一半,为此,粮食产量需增加75%。另外,人口的老龄化对医疗系统的压力不断增加,开发可以增强人体健康的食品十分必要。加快农作物新品种的培育也是第三世界发展中国家发展生物技术的一个共同目标,我国的农业生物技术的研究与应用已经广泛开展,并已取得显著效益。

谁发现了生物的每个遗传特征都受到遗传因子的控制

孟德尔发现了生物的每个遗传特征都受到遗传因子的控制。1865 年,孟德尔发现了遗传定律,认为生物性状的遗传由遗传因子决定,遗传因子后来被称为基因。每一个基因决定一个性状,因此有机体的全貌受其全部基因的控制。比如你的身高、相貌、智力都由基因决定。他们还发现了基因能够进行突变。一个基因突变了,它相对应的遗传性状也会发生变化,例如白花颜色变为黄花颜色。扩展资料孟德尔提出的遗传因子的分离假说,用他自己所设计的测交等一系列试验,已经得到了充分的验证,亦被后人无数次的试验所证实,现已被世人所公认,并被尊称为孟德尔的分离规律。这可以用一句话来概括,那就是:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。孟德尔在揭示了由一对遗传因子(或一对等位基因)控制的一对相对性状杂交的遗传规律——分离规律之后,这位才思敏捷的科学工作者。又接连进行了两对、三对甚至更多对相对性状杂交的遗传试验,进而又发现了第二条重要的遗传学规律,即自由组合规律,也有人称它为独立分配规律。这里我们仅介绍他所进行的两对相对性状的杂交试验。参考资料来源:百度百科-格雷戈尔·孟德尔

生物体的各种性状都是由基因控制的吗?

不是,还有外部条件会对性状产生影响,类似于:同种橘子种在南北边是不同的口味,除虫和施肥的田地的产量比不管的田地产量是不同的,所以说不仅是基因控制的,也可能是外部环境所影响的.随便带一句,基因控制还分单基因和多基因控制.

生物所有性状都是由一对基因控制吗为什么

不对,性状不是单一的,他分很多有些性状是由一对基因控制的,而有许多性状则是由多个基因共同决定的如:肤色,血压,身高,体重,智商等

基因控制生物性状的直接与间接方式各是什么?

间接方式:基因通过控制酶的合成来控制代谢过程,进而开始生物的性状(即间接方式)。例如,人的白化病就是由于控制酪氨酸酶的基因异常引起的。酪氨酸酶存在于正常人体皮肤毛发等处,它能将酪氨酸转变为黑色素;如果一个人由于基因不正常缺少酪氨酸酶,那么此人就不能合成黑色素,从而表现百化症状。直接方式:基因通过控制蛋白质的结构直接控制生物性状。例如镰刀形细胞贫血症,人体正常基因编码的血红蛋白组成的红细胞结构正常,呈现圆饼状;而异常基因编码的血红蛋白组成的红细胞呈现镰刀形,其功能受到影响。

dna上有许多控制生物性状的基因对吗

对的分子上具有特定遗传信息、能够决定生物的某一性状的片段叫做基因,DNA分子很长,其上面有许多个决定生物性状的片段,即每个DNA分子上有许多基因,这些基因分别控制着不同的性状.故答案为:√.

基因位于染色体上,控制着生物的性状。

细胞内的遗传信息主要储存在细胞核中,因此,细胞核是生物遗传信息的中心.细胞核中遗传信息的载体是染色体,染色体主要由DNA和蛋白质组成,一条染色体上带有一个DNA分子;其中遗传信息位于DNA上,因此,DNA是主要的遗传物质;DNA上具有特定遗传效应的片段就是基因;生物的性状是由基因控制的.每种生物的体细胞内都有一定数量、形态的染色体,染色体在体细胞中是成对存在的,基因也是成对存在的. 故答案为: 基因 成对 成对 可遗传

生物体所有性状都是由一对基因控制的

A、生物的性状是由基因控制的,A正确; B、基因是有遗传效应的DNA片段,即为DNA分子上的小片段,B正确; C、基因与性状并不都是一一对应的关系,多对基因可能控制一对相对性状,C错误; D、基因型为AA或Aa均表现为显性性状,D正确. 故选:C.

生物的一种性状由一个基因控制吗?

生物的一种性状可以由一个基因控制,也有由2个基因控制,也有由多个基因控制的!

DNA重组技术是怎样的原理 ,高中生物拜托各位大神

DNA重组技术是怎样的原理 ,高中生物拜托各位大神 最基本的原理是核酸内切酶的特异切割活性(高中一般只提粘性末端)和连线酶的连结活性,以及碱基互补配对。通过使用特定的核酸内切酶,将目的片段和经改造后的特定载体(质粒、病毒核酸链,其上有特异的切割位点,转录启动、终止序列,以及用于筛选表达的序列)切割,形成能够互补的粘性末端,再通过连线酶进行聚合形成重组子。将重组质粒(以质粒为例)汇入感受态细胞,培养,筛选,最后进行表达 采纳哦 求文件: 高中生物选修3DNA重组技术的基本工具 1.限制性核酸内切酶(简称限制酶):用于切割载体和目的基因,有专一性,只可形成一种粘性末端。(目的基因和质粒要用同一种限制酶进行切割,为保证粘性末端相同) 2.DNA连线酶:用于连线目的基因与载体(它没有专一性~~可以连线任意粘性末端~~不要把它和DNA聚合酶还有RNA连线酶搞混哦~~) 3.载体:一般选用质粒(细菌中科自主复制的小型环状DNA)还可以用动、植物病毒。 载体的选用需满足的要求:1 要可在受体细胞内自主复制 2 有多个限制酶切点 3 有标记基因,以便筛选含重组基因的细 胞 4 对受体细胞无害 浙江高中生物好学吗,我想选生物,拜托各位大神给点建议 高中的生物没有什么难度,实力中等的人都可以比较好的学习。我是江苏的,实力一般,选的生物,高考A+。也做过其他省的试卷,并不是很难。上课好好听,做做笔记就可以了。说白了,生物其实是半文科半理科,平时多翻翻书就行了。 高中生物各种技术或生物学原理的应用 基因工程的原理是基因重组(也叫基因拼接或者你说的转基因技术)。 抗虫棉的培育,乳腺反应器,膀胱反应器,基因检测,基因治疗这些都是基因工程的应用当然原理也是基因重组。 植物组织培养的原理是植物细胞的全能性。 微型繁殖,作物脱毒,人工种子,花药离体培养,细胞产物的工厂化生产都是植物组织培养的应用,原理当然也是植物细胞的全能性。 植物体细胞杂交的原理是细胞膜的流动性(原生质体融合的过程)和细胞的全能性(杂种细胞发育成杂种植株) 像白菜甘蓝,番茄马铃薯等都是植物体细胞杂交的应用。 动物细胞培养的原理是细胞增殖。 蛋白质生物制品的生产,面板移植材料的培育,疫苗等都是动物细胞培养的应用。 动物细胞融合的原理是生物膜的流动性和细胞增殖。 单克隆抗体的制备,单抗诊断盒,生物导弹都是动物细胞融合的应用。 核移植,克隆技术的原理是动物细胞核的全能性。 加速家畜遗传改良,保护濒危物种,克隆器官等都是克隆技术的应用。 手机上一个字一个字敲的,累死了快,希望对你有用。 高中生物(基因重组) 基因重组发生在:减数分裂的减数一期的中期 → 后期过程中,随着同源染色体的分离,非同源染色体就会发生自由组合,即基因重组! 精卵结合的过程,精卵各自的基因都是一定的,不存在什么基因重组的说法! 基因重组是指在原有的基因里发生重新组合,排列,就是说基因重组是指在同一个个体中发生的,而受精作用是异体基因第一次的组合,无所谓重组。。。 高中生物必修三人体三道防线疑问拜托各位大神 不对 谁有高中生物必修2 重组DNA技术种子下载,感激不尽 高中生物必修2 重组DNA技术种子下载地址: thunder:QUFodHRwOi8vYWlrYW5keS5vcmcv6auY5Lit55Sf54mp5b+F5L+uMiDph43nu4RETkHmioDmnK8uYXZpP2ZpZD0qM2pIVVJ6cVpsZypCS2tTYjNsZFo5QmFoTUlBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBJm1pZD02NjYmdGhyZXNob2xkPTE1MCZ0aWQ9RTUxREQ3QkMwMUE5MjgyQkE3N0VDMUMzQkVCM0NCRjcmc3JjaWQ9MTIwJnZlcm5vPTFaWg== 麻烦选为满意答案,谢谢! 高中生物生物技术实验 高中毕业生可参加普通高等学校招生全国统一考试。截至2016年5月30日,全国高等学校共计2879所,其中:普通高等学校2595所(含独立学院266所),学生们可以根据考试成绩自主择校。 高中生物知识点散乱,怎么从整体上把握?拜托各位大神 有一本书挺好的,不贵6.8元 绿卡凯尔 里面有整个高中的知识点的总结。

重组DNA技术在现代分子生物学发展中的意义?

可以提取可用于基因治疗的基因工程细胞,进一步了解基因调控机制和疾病分子基理,也对于人类医学的发展具有重要意义另外,根据重组技术所制造的基因芯片,基因芯片即通过微价格技术将特定序列DNA片段(基因探针)固定与硅片上,基因芯片可用于基因测序,寻找有用的目的基因或对基因的序列进行分子水平上的分析。根据还可以从分子水平上了解疾病这主要是说重组DNA技术在现在分子水平上对生物医学发展的意义,你也看到了,基本上所说的都和疾病的治疗有关.我知道也就这些了,看看课本说不定还会有新的思路。

什么是基因重组,在原核微生物中哪些方式可引起基因重组。

定义:造成基因型变化的核酸的交换过程。包括发生在生物体内(如减数分裂中异源双链的核酸交换)和在体外环境中用人工手段使不同来源DNA重新组合的过程。原核生物的基因重组有转化、转导和接合等方式。受体细胞直接吸收来自供体细胞的DNA片段,并使它整合到自己的基因组中,从而获得供体细胞部分遗传性状的现象,称为转化。通过噬菌体媒介,将供体细胞DNA片段带进受体细胞中,使后者获得前者的部分遗传性状的现象,称为转导。自然界中转导现象较普遍,可能是低等生物进化过程中产生新的基因组合的一种基本方式。供体菌和受体菌的完整细胞经直接接触而传递大段DNA遗传信息的现象,称为接合。细菌和放线菌均有接合现象。高等动植物中的基因重组通常在有性生殖过程中进行,即在性细胞成熟时发生减数分裂时同源染色体的部分遗传物质可实现交换,导致基因重组。基因重组是杂交育种的生物学基础,对生物圈的繁荣昌盛起重要作用,也是基因工程中的关键性内容。基因工程的特点是基因体外重组,即在离体条件下对DNA分子切割并将其与载体DNA分子连接,得到重组DNA。1977年美国科学家首次用重组的人生长激素释放抑制因子基因生产人生长激素释放抑制因子获得成功。此后,运用基因重组技术生产医药上重要的药物以及在农牧业育种等领域中取得了很多成果,预计下世纪在生产治疗心血管病、镇痛和清除血栓等药物方面基因重组技术将发挥更大的作用。

高中生物,关于基因对性状的控制

基因与性状的关系记住下面的话即可基因决定性状,但受环境条件的影响,基因通过两种方式控制性状1.通过控制蛋白质的合成,直接控制性状2.通过控制酶的合成,从而控制代谢过程 从基因与性状的对应关系来说:有一个基因对多个性状起作用(一因多效),也有多对基因控制一种性状(多因一效),

基因对生物性状的控制?

基因对性状的控制 基因对性状的控制有两种方式: 1、基因通过控制蛋白质的合成来直接控制性状 2、基因通过控制酶的合成近而控制代谢过程,以此来控制性状 途经一就是 DNA(转录过程)RNA(翻译过程)蛋白质,合成的蛋白质直接能用,作为一个身体的部件直接构成人体,例如血红蛋白,基因控制血红蛋白的合成直接控制一系列性状,例如血液红色,血液带氧……途经二就是合成酶阿,DNA(转录过程)RNA(翻译过程)蛋白质,这个但不致就是酶,酶是催化剂,不能直接构成人体,注意,不直接构成人体,而是一种成分罢了,而是用来控制代谢过程,例如合成的唾液淀粉酶,控制唾液消化淀粉的过程,进而控制性状,即唾液是否可以消化淀粉…… 简单的说: 途经一是直接生产身体部件 途径二生产酶,控制代谢(例如你的呼吸之类的生命活动) 基因通过控制什么来控制生物性状 1 基因通过合成蛋白质直接控制性状 2 基因通过酶的合成控制代谢,间接控制生物性状 另:一个基因可以控制多对性状,一个性状也可以由多对基因控制 过程是转录、翻译成不同的产物 生物的每一种性状是由一个基因控制的______.(判断对错 遗传学中把生物体所表现的形态结构、生理特征和行为方式等统称为性状;同种生物同一性状的不同表现称为相对性状,例如豌豆花色有红色和白色,种子形状有圆和皱等,位于一对染色体的相同位置上控制着相对性状的一对基因就是等位基因.生物的性状是由成对的基因控制的,而不是由一个基因控制的,成对的基因往往有显性和隐性之分.当细胞内控制某种性状的基因一个是显性、一个是隐性时,只有显性基因控制的性状才会表现出来,表现出隐性性状时控制的基因只有一种:如aa;表现出显性性状时控制的基因有两种:如AA或Aa.因此生物的性状通常是由一对基因控制的.故答案为:×. 生物的某一性状是由一个基因控制 这句话对么 不对 有些性状是由一对基因控制的,而有许多性状则是由多个基因共同决定的 如:肤色,血压,身高,体重,智商等 对于基因控制生物的性状,遗传下去的不是______本身,而是控制性状的______ 生物体的各种性状都是由基因控制的,性状的遗传实质上是亲代通过生殖细胞( *** 和卵细胞)把控制性状的基因传递给了子代,在有性生殖过程中, *** 与卵细胞就是基因在亲子代间传递的桥梁.故答案为:性状;基因

基因通过控制什么来控制生物性状

1基因通过合成蛋白质直接控制性状2基因通过酶的合成控制代谢,间接控制生物性状另:一个基因可以控制多对性状,一个性状也可以由多对基因控制过程是转录、翻译成不同的产物

基因通过什么方式来控制生物的性状?

生物体的形状、大小、结构以及细胞内的生物化学反应都和蛋白质有关.基因就是通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现的.

基因可以通过控制什么,进而控制生物的性状

1 基因通过合成蛋白质直接控制性状 2 基因通过酶的合成控制代谢,间接控制生物性状 另:一个基因可以控制多对性状,一个性状也可以由多对基因控制 过程是转录、翻译

生物体性状的遗传是由什么控制的

基因(有遗传效应的DNA)对性状的控制有两种途径,直接途径:基因通过控制蛋白质的结构来控制生物体性状,间接途径:基因通过控制酶的合成来控制代谢过程,进而控制生物体性状

基因通过控制什么来控制生物性状

基因通过控制相关蛋白质的合成来控制生物性状。

基因通过什么来控制生物的性状,过程称为什么

你好!基因是具有遗传效应的DNA片段。1。通过控制蛋白质的合成直接控制性状。过程包括转录、翻译。2。通过控制酶的合成控制代谢,间接控制生物性状。满意请采用。

基因控制生物的性状

基因控制生物的性状,这个说法正确。当我们说基因控制生物的性状时,其实是指基因决定了生物表现出一系列的形态特征和行为方式。通过基因的表达与调控,生物体才得以正常地生长发育、适应环境以及完成各项生命活动。具体来看,在一个生物个体的基因组中,每个基因决定着某个特定功能的蛋白质的合成。而这些不同的蛋白质则可以相互作用,从而控制生物体的生理过程、形态结构和行为特征。例如,人类基因组共有大约2万多个基因,这些基因编码着身体方方面面所需要的蛋白质,如血红蛋白、胰岛素、激素等。这些蛋白质对于身体的正常运转起着至关重要的作用,进而影响人的身高、眼睛和头发颜色、智力水平、易感性等生物性状。基因的应用:1、基因诊断与治疗:基因诊断技术可以检测人类基因组中存在的致病变异,准确地诊断人们患有的疾病,如某些遗传性疾病和癌症等。同时,基因治疗技术则可利用基因工程手段来改变或纠正基因上的突变,治疗一些目前无法根治的疾病。2、农业基因改良:利用基因编辑技术,对作物、畜禽等资源生产动植物进行基因改良,通过调整其基因表达来提高品质和产量等特性。这种技术被认为能够减少使用化学农药,从而更好地保护环境,满足日益增长的全球食品需求。3、DNA数据库比对:DNA数据是每个人独一无二的生物特征,基因组测序技术的出现使得DNA的数据分析成为可能。通过将他人DNA样本与已知数据库比较,我们可以解决许多法医和学术问题,如破解未知身份的罪犯、确认家谱关系等。

如何判断生物的性状由几对等位基因控制

具体情况具体分析,记住一对基因的特征比例,杂合体自交(3/4、1/4)、侧交(1/2、1/2)然后根据题目具体分析。比如,多对等位基因决定一种性状时,每对基因都至少有一个是显性时表现和种性状,其余的表现其它性状(可以是一种,也可以是几种)那么,两个纯合体杂交得F1,F1自交得F2,我们只要考虑F2中那个显性个体占多少就可大概得出是几对基因了。如果F2中显性个体占9/16(3/4的平方),表明是两对基因决定如果F2中显性个体占27/64(3/4的立方),表明是三对基因决定如果F2中显性个体占18/256(3/4的四次方),表明是四对基因决定

基因控制生物体性状的方式

基因是在染色体上的.而最终控制生物性状的是蛋白质.正因为蛋白质的基本单位氨基酸有20多种.再加上蛋白质的空间结构不同.所以每个生物表现的性状都不同.可以说...基因控制性质主要就是中心法则..给你说说...首先染色体上的DNA双链在细胞核内进行转入.以一条DNA母链为母版.根据碱基互补原则.转入出一条RNA.然后这条RNA出细胞核到核糖体上进行翻译.RNA上转录来的碱基以三个为一个密码子在TRNA的运载下.成为一个氨基酸.多个氨基酸经过脱水缩合形成一条多肽链.这多肽链进行盘绕,折叠...就是蛋白质....了(累....)最后蛋白质控制性状了....^_^(希望对你有用....)

在生物体内是否存在有某一个基因能控制生物的多个性状?

很多,即常说的“一因多效”。尤其是功能比较基础的,或者是激素调控相关的基因,影响面很大。举个简单的例子,豌豆的红花与白花基因,除控制豌豆花色遗传以外,红花基因还能使叶腋有紫斑,种皮为褐色;白花基因则不能。水稻的矮生基因除能控制水稻植株长矮之外,还能促使分蘖力强,叶色深绿。此外,还有一个基因编码多种不同蛋白激素的,比如pro-TRH, POMC等扩展资料:1、翻毛鸡的翻毛基因,不仅影响鸡羽的反卷,而且还影响其体温下降,心跳增快,心、脾扩大,生育力降低等,这说明基因通过生理生化过程而影响一系列性状的表现。2、又如苯丙酮尿症,经典型PKU原发缺陷为遗传性缺乏苯丙氨酸羟化酶,患者血、尿中苯丙氨酸和苯丙酮酸水平升高。其继发症状为:严重智力发育障碍;苯丙氨酸不能转变为酪氨酸,黑色素相应减少,发色变浅;激动行为,多动;反射功能亢进,肌肉紧张过度;患者有霉臭或鼠臭。3、再如镰状细胞贫血,其原发效应是由于血红蛋白β链第6位谷氨酸被缬氨酸取代,形成变异型血红蛋白HbS,纯合子患者血红蛋白溶解度下降,红细胞镰变。其继发症状为:贫血可导致脾肿大、虚弱、倦怠;红细胞黏滞度增高可导致血栓形成和梗死。根据血栓形成部位的不同出现各种不同的症状,如心力衰竭、血尿、肾衰竭、脑血管意外、四肢疼痛及腿部溃疡、腹部疼痛、脾梗死等。这是基因多效性的一个非常典型的例子。参考资料来源:百度百科-基因多效性

生物所有性状都是由一对基因控制吗为什么

不是,一种性状由多种基因(蛋白质)控制,这是其一,一种基因变异后所对应的基因也很多,而不只是一对,这是其二。

生物的各种性状都是由基因控制的吗?

按照现代生物理论:性状(表现型)= 基因(控制)+ 环境(影响)。请注意:基因与环境的地位是不同的,只有基因才能说是控制,环境只能说是影响。 这是哲学上,外因和内因的问题。基因是生物体本身的因素,是内因,环境 是外界因素,属于外因。外因通过内因才能起作用。举个例子:“巧妇难为无米之催” 在这里,米就是做饭的内因,而手艺是外因。没有做饭的材料(内因),手艺(外因)再好,也是白搭。希望对你有帮助!

为什么基因控制生物的性状

这个其实是很复杂的,如果你是高中或初中学生,你可以暂且认为:当显性基因和隐性基因同时存在于一个基因座上时,只有显性基因可以控制该生命个体的性状。如果你还需要更详细的解释,联系我好了!

基因通过控制什么来控制生物性状

基因对性状的控制可以分为直接控制和间接控制两种:1.直接控制结构蛋白:如镰刀形细胞贫血症就是因为血红红蛋白结构异常引起;2.通过控制酶的合成来影响代谢,从而间接控制性状:如白化病(酪氨酸酶不能合成从而影响黑色素的形成)。

基因通过控制什么来控制生物性状

基因对性状的控制可以通过以下两种途径:第一,间接控制:基因通过控制酶的合成来控制代谢过程,进而控制生物的性状;第二,直接控制:基因通过控制蛋白质的结构直接控制生物的性状。

基因通过控制什么来控制生物性状

基因对性状的控制是根据遗传的中心法则,经过两个过程。1.转录(在细胞核内进行):按碱基互补配对的原则(a-tc-g),以dna上的一条链为模板,把dna上的遗传信息,转录到rna上。带有遗传信息的rna叫信使rna。2.翻译(在细胞质进行):信使rna从细胞核出来进入细胞质,与核糖体结合,按碱基互补配对原则,根据信使rna上的碱基排列顺序(每三个碱基决定一个氨基酸),把氨基酸一个一个连接起来,合成具有一定顺序的蛋白质(性状)。

为什么基因控制生物的性状

基因控制蛋白质的合成,蛋白质包括酶类和非酶蛋白,非酶蛋白直接参与细胞的构成,比如说,组蛋白参与染色体的构成,没有组蛋白的基因,DNA就无法形成光镜下可见的染色体。生物体的非蛋白物质的合成和代谢则由一系列的酶促反应完成。比如构成细胞膜的磷脂,则是由甘油,脂肪酸和磷酸在酶作用下合成的。这些酶由基因编码,一个基因决定一种酶,缺少这些基因,相应的物质就不能合成,生物体就会出现各种特征。另外,物质的代谢也由酶催化,比如大多数生物有合成糖酵解途径的酶的基因,因此能利用葡萄糖酵解获得能量,而立克次氏体则无这些基因,因此它不能利用糖类获得能量。最后举个例子,人类的猫叫综合症是由于人类23号染色体的一段缺失造成的,缺失的染色体上有很多基因,没有了这些基因,人就表现出病症。

10、举例说明基因如何控制生物的性状

基因控制生物性状过程:1.基因是有遗传效应的DNA片段(例如人眼皮的性状单眼皮或双眼皮);2.转录。含有单眼皮的基因在细胞核通过转录形成信使RNA;3.翻译。带有遗传信息的RNA从细胞核出来进入细胞质,与核糖体结合,根据遗传信息,合成具有一定氨基酸顺序的蛋白质(单眼皮性状)。无论转录还是翻译,都是按碱基配对原则进行的。

10、举例说明基因如何控制生物的性状

基因控制生物性状过程:1.基因是有遗传效应的DNA片段(例如人眼皮的性状单眼皮或双眼皮);2.转录。含有单眼皮的基因在细胞核通过转录形成信使RNA;3.翻译。带有遗传信息的RNA从细胞核出来进入细胞质,与核糖体结合,根据遗传信息,合成具有一定氨基酸顺序的蛋白质(单眼皮性状)。无论转录还是翻译,都是按碱基配对原则进行的。

基因是怎么控制生物性状的

不完全正确,生物性状是基因的表达。但是,生物的性状是由蛋白质控制的,有基因不一定能控制性状,比如杂合体中的隐性基因就不能控制性状。但是要追究的话,最终基因也参与了性状的表达。要看你所问的问题要探讨到什么程度了,你要是将我说的拿去和你的老师探讨,他会对你刮目相待的。嘻嘻嘻!

10、举例说明基因如何控制生物的性状

基因控制生物性状过程:1.基因是有遗传效应的DNA片段(例如人眼皮的性状单眼皮或双眼皮);2.转录。含有单眼皮的基因在细胞核通过转录形成信使RNA;3.翻译。带有遗传信息的RNA从细胞核出来进入细胞质,与核糖体结合,根据遗传信息,合成具有一定氨基酸顺序的蛋白质(单眼皮性状)。无论转录还是翻译,都是按碱基配对原则进行的。

10、举例说明基因如何控制生物的性状

基因控制生物性状过程:1.基因是有遗传效应的DNA片段(例如人眼皮的性状单眼皮或双眼皮);2.转录。含有单眼皮的基因在细胞核通过转录形成信使RNA;3.翻译。带有遗传信息的RNA从细胞核出来进入细胞质,与核糖体结合,根据遗传信息,合成具有一定氨基酸顺序的蛋白质(单眼皮性状)。无论转录还是翻译,都是按碱基配对原则进行的。

高中生物核酸有什么用啊?

一、知识要点核酸分两大类:DNA和RNA.所有生物细胞都含有这两类核酸.但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA.核酸的基本结构单位是核苷酸.核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成.核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起.核酸中还有少量的稀有碱基.RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶.在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤.核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使.DNA的空间结构模型是在1953年由Watson和Crick两个人提出的.建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性.DNA是由两条反向直线型多核苷酸组成的双螺旋分子.单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键.按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行.两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系.维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小.DNA能够以几种不同的结构形式存在.从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实.在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径.DNA中的一些特殊顺序能引起DNA弯曲.带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构.由于它存在于基因调控区,因而有重要的生物学意义.不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构.tRNA的二级结构为三叶草形,三级结构为倒L形.mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体.核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸.酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定.RNA易被稀碱水解,产生2"-和3"-核苷酸,DNA对碱比较稳定.细胞内有各种核酸酶可以分解核酸.其中限制性内切酶是基因工程的重要工具酶.核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性.碱基杂环中的氮具有结合和释放质子的能力.核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子.核酸的碱基具有共轭双键,因而有紫外吸收的性质.各种碱基、核苷和核苷酸的吸收光谱略有区别.核酸的紫外吸收峰在260nm附近,可用于测定核酸.根据260nm与280nm的吸收光度(A260)可判断核酸纯度.变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂.引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性.核酸变性时,物理化学性质将发生改变,表现出增色效应.热变性一半时的温度称为熔点或变性温度,以Tm来表示.DNA的G+C含量影响Tm值.由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度.根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值.变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应.用不同来源的DNA进行退火,可得到杂交分子.也可以由DNA链与互补RNA链得到杂交分子.杂交的程度依赖于序列同源性.分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术.染色体中的DNA分子是细胞内最大的大分子.许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中.许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的.病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多.真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成.其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋.细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢.

核苷酸有哪些生物学功能

核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一.最早是瑞士的化学家米歇尔于1870年从脓细胞的核中分离出来的,由于它们是酸性的,并且最先是从核中分离的,故称为核酸.核酸的发现比蛋白质晚得多.核酸分为脱氧核糖核酸(简称DNA)和核糖核酸(简称RNA)两大类,它们的基本结构单位都是核苷酸(包含脱氧核苷酸). 1.核酸的基本单位——核苷酸 每一个核苷酸分子由一分子戊糖(核糖或脱氧核糖)、一分子磷酸和一分子含氮碱基组成.碱基分为两类:一类是嘌呤,为双环分子;另一类是嘧啶,为单环分子.嘌呤一般均有A、G2种,嘧啶一般有C、T、U3种.这5种碱基的结构式如下图所示. 由上述结构式可知:腺嘌呤是嘌呤的6位碳原子上的H被氨基取代.鸟嘌呤是嘌呤的2位碳原子上的H被氨基取代,6位碳原子上的H被酮基取代.3种嘧啶都是在嘧啶2位碳原子上由酮基取代H,在4位碳原子上由氨基或酮基取代H而成,对于T,嘧啶的5位碳原子上由甲基取代了H.凡含有酮基的嘧啶或嘌呤在溶液中可以发生酮式和烯醇式的互变异构现象.结晶状态时,为这种异构体的容量混合物.在生物体内则以酮式占优势,这对于核酸分子中氢键结构的形成非常重要.例如尿嘧啶的互变异构反应式如下图. 酮式(2,4–二氧嘧啶) 烯酸式(2,4–二羟嘧啶) 在一些核酸中还存在少量其他修饰碱基.由于含量很少,故又称微量碱基或稀有碱基.核酸中修饰碱基多是4种主要碱基的衍生物.tRNA中的修饰碱基种类较多,如次黄嘌呤、二氢尿嘧啶、5–甲基尿嘧啶、4–硫尿嘧啶等,tRNA中修饰碱基含量不一,某些tRNA中的修饰碱基可达碱基总量的10%或更多. 核苷是核糖或脱氧核糖与嘌呤或嘧啶生成的糖苷.戊糖的第1碳原子(C1)通常与嘌呤的第9氮原子或嘧啶的第1氮原子相连.在tRNA中存在少量5–核糖尿嘧啶,这是一种碳苷,其C1是与尿嘧啶的第5位碳原子相连,因为这种戊糖与碱基的连接方式特殊(为C—C连接),故称为假尿苷如下图. 腺苷(A) 脱氧胸苷(dT) 假尿苷(ψ) 核苷酸是由核苷中糖的某一羟基与磷酸脱水缩合而成的磷酸酯.核苷酸的核糖有3个自由的羟基,可与磷酸酯化分别生成2"–、3"–和5"–核苷酸.脱氧核苷酸的脱氧核糖只有2个自由羟基,只能生成3"–和5"–脱氧核苷酸.生物体内游离存在的核苷酸都是5"–核苷酸.以RNA的腺苷酸为例:当磷酸与核糖5位碳原子上羟基缩合时为5"–腺苷酸,用5"–AMP表示;当磷酸基连接在核糖3位或2位碳原子上时,分别为3"–AMP和2"–AMP.5"–腺苷酸和3"–脱氧胞苷酸的结构式如下图所示. 核苷酸结构也可以用下面简式(如下图)表示.B表示嘌呤或嘧啶碱基,直线表示戊糖,P表示磷酸基. 2"–核苷酸 3"–核苷酸 5"–核苷酸 3"–或5"–核苷酸简式也可分别用Np和pN表示(N代表核苷).即当P在N右侧时为3"–核苷核,P在N左侧的为5"–核苷酸,如3"–核苷酸和5"–核苷酸可分别用Ap和pA表示. 在生物体内,核苷酸除了作为核酸的基本组成单位外,还有一些核苷酸类物质自由存在于细胞内,具有各种重要的生理功能. (1)含高能磷酸基的ATP类化合物:5"–腺苷酸进一步磷酸化,可以形成腺苷二磷酸和腺苷三磷酸,分别为ADP和ATP表示.ADP是在AMP接上一分子磷酸而成,ATP是由AMP接上一分子焦磷酸(PPi)而成,它们的结构式如下图所示. 腺苷二磷酸(ADP) 腺苷三磷酸(ATP) 这类化合物中磷酸之间是以酸酐形式结合成键,磷酸酐键具有很高的水解自由能,习惯上称为高能键,通常用“~”表示.ATP分子中有2个磷酸酐键,ADP中只含1个磷酸酐键. 在生活细胞中,ATP和ADP通常以Mg2+或Mn2+盐的复合物形式存在.特别是ATP分子上的焦磷酸基对二价阳离子有高亲和力;加上细胞内常常有相当高浓度的Mg2+,使ATP对Mg2+的亲和力远大于ADP.在体内,凡是有ATP参与的酶反应中,大多数的ATP是以Mg2+—ATP复合物的活性形式起作用的.当ATP被水解时,有两种结果:一是水解形成ADP和无机磷酸;另一种是水解生成AMP和焦磷酸.ATP是大多数生物细胞中能量的直接供体,ATP-ADP循环是生物体系中能量交换的基本方式. 在生物细胞内除了ATP和ADP外,还有其他的5"–核苷二磷酸和三磷酸,如GDP、CDP、UDP和GTP、CTP、UTP;5"–脱氧核苷二磷酸和三磷酸,如dADP、dGDP、 dTDP、dCDP和dATP、dCTP、dGTP、dTTP,它们都是通过ATP的磷酸基转移转化来的,因此ATP是各种高能磷酸基的主要来源.除ATP外,由其他有机碱构成的核苷酸也有重要的生物学功能,如鸟苷三磷酸(GTP)是蛋白质合成过程中所需要的,鸟苷三磷酸(UTP)参与糖原的合成,胞苷三磷酸(CTP)是脂肪和磷脂的合成所必需的.还有4种脱氧核糖核苷的三磷酸酯.即dATP、dCTP、dGTP、dTTP则是DNA合成所必需的原材料. (2)环状核苷酸;核苷酸可在环化酶的催化下生成环式的一磷酸核苷.其中以3",5"–环状腺苷酸(以cAMP)研究最多,它是由腺苷酸上磷酸与核糖3",5"碳原子酯化而形成的,它的结构式如下图所示. 正常细胞中cAMP的浓度很低.在细胞膜上的腺苷酸环化酶和Mg2+存在下,可催化细胞中ATP分子脱去一个焦磷酸而环化成cAMP,使cAMP的浓度升高,但cAMP又可被细胞内特异性的磷酸二酯酶水解成5"–AMP,故cAMP的浓度受这两种酶活力的控制,使其维持一定的浓度.该过程可简单表示如下: ATPcAMP+焦磷酸5"–AMP 现认为cAMP是生物体内的基本调节物质.它传递细胞外的信号,起着某些激素的“第二信使”作用.不少激素的作用是通过cAMP进行的,当激素与膜上受体结合后,活化了腺苷酸环化酶,使细胞内的cAMP含量增加.再通过cAMP去激活特异性的蛋白激酶,由激酶再进一步起作用.近年来发现3"、5"–环鸟苷酸(cGMP)也有调节作用,但其作用与cAMP正好相拮抗.它们共同调节着细胞的生长和发育等过程.此外,在大肠杆菌中cAMP也参与DNA转录的调控作用. 2.核酸的化学结构(或一级结构) 核酸分子是由核苷酸单体通过3",5"–磷酸二酯键聚合而成的多核苷酸长链.核苷酸单体之间是通过脱水缩合而成为聚合物的,这点与蛋白质的肽链形成很相似.在脱水缩合过程中,一个核苷酸中的磷酸给出一个氢原子;另一个相邻核苷酸中的戊糖给出一个羟基,产生一分子水,每个单体便以磷酸二酯键的形式连接起来.由许多个核苷酸缩合而形成多核苷酸链.如果用脾磷酸二酯酶来水解多核苷酸链,得到的是3"–核苷酸,而用蛇毒磷酸二酯酶来水解得到的却是5"–核苷酸.这证明多核苷酸链是有方向的,一端叫3"–未端,一端叫5"–末端.所谓3"–末端是指多核苷酸链的戊糖上具有3"–磷酸基(或羟基)的末端,而具有5"–磷酸基(或羟基)的末端则称为5"末–端.多核苷酸链两端的核苷酸为末端核苷酸,末端磷酸基与核苷相连的键称为磷酸单酯键.书写多核苷酸链时,通常将5"端写在左边,3"端写在右边.但在书写一条互补的双链DNA时,由于二条链是反向平行的,因此每条链的末端必须注明5"或3".通常寡核苷酸链可用右面的简式表示(如右图所示). 述简式还可简化为pApCpGpUOH,若进一步简化,还可将核苷酸链中的p省略,或在核苷酸之前加小点,则变为pACGUOH或pA·C·G·UOH. 3.核酸的性质 (1)一般性质 核酸和核苷酸既有磷酸基,又有碱性基团,为两性电解质,因磷酸的酸性强,通常表现为酸性.核酸可被酸、碱或酶水解成为各种组分,其水解程度因水解条件而异.RNA在室温条件下被稀碱水解成核苷酸而DNA对碱较稳定,常利用该性质测定RNA的碱基组成或除去溶液中的RNA杂质.DNA为白色纤维状固体,RNA为白色粉末;都微溶于水,不溶于一般有机溶剂.常用乙醇从溶液中沉淀核酸. (2)核酸的紫外吸收性质 核酸中的嘌呤碱和嘧啶碱均具有共轭双键,使碱基、核苷、核苷酸和核酸在240~290nm的紫外波段有一个强烈的吸收峰,最大吸收值在260nm附近.不同的核苷酸有不同的吸收特性.由于蛋白质在这一光区仅有很弱的吸收,蛋白质的最大吸收值在280nm处,利用这一特性可以鉴别核酸纯度及其制剂中的蛋白质杂质. (3)核酸的变性和复性 ①核酸的变性:是指核酸双螺旋区的氢键断裂,碱基有规律的堆积被破坏,双螺旋松散,发生从螺旋到单键线团的转变,并分离成两条缠绕的无定形的多核苷酸单键的过程.变性主要是由二级结构的改变引起的,因不涉及共价键的断裂,故一级结构并不发生破坏.多核苷酸骨架上共价键(3",5"—磷酸二酯健)的断裂称为核酸的降解,降解引起核酸分子量降低.引起核酸变性的因素很多,如加热引起热变性,pH值过低(如pH<4=的酸变性和pH值过高(pH>11.5)的碱变性,纯水条件下引起的变性以及各种变性试剂,如甲醇、乙醇、尿素等都能使核酸变性.此外,DNA的变性还与其分子本身的稳定性有关,由于C—C中有三对氢健而A-T对只有两对氢键,故C+G百分含量高的DNA分子就较稳定,当DNA分子中A+T百分含量高时就容易变性.环状 DNA分子比线形DNA要稳定,因此线状DNA较环状DNA容易变性. 核酸变性后,一系列物理和化学性质也随之发生改变,如260nm区紫外吸收值升高,粘度下降,浮力密度升高,同时改变二级结构,有的可以失去部分或全部生物活性.DNA的加热变性一般在较窄的温度范围内发生,很像固体结晶物质在其熔点突然熔化的情况,因此通常把热变性温度称为“熔点”或解键温度,用Tm表示.对DNA而言,通常把DNA的双螺旋结构失去一半时的温度(或变性量达最大值的一半时的温度)称为该DNA的熔点或解链温度.在此温度可由紫外吸收(或其他特性)最大变化的半数值得到.DNA的Tm值一般在70℃~85℃.RNA变性时发生与DNA变性时类似的变化,但其变化程度不及DNA大,因为RNA分子中只有部分螺旋区. ②核酸的复性:变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺旋结构,这个过程称为复性.DNA复性后,许多物理、化学性质又得到恢复,生物活性也可以得到部分恢复.DNA的片段越大,复性越慢;DNA的浓度越高,复性越快. DNA或RNA变性或降解时,其紫外吸收值增加,这种现象叫做增色效应,与增色效应相反的现象称为减色效应,变性核酸复性时则发生减色效应.它们是由堆积碱基的电子间相互作用的变化引起的.

核苷酸有哪些生物学功能

核苷酸类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生物化学反应过程。现概括为以下五个方面:① 核苷酸是合成生物大分子核糖核酸 (RNA)及脱氧核糖核酸(DNA)的前身物,RNA中主要有四种类型的核苷酸:AMP、GMP、CMP和UMP。合成前身物则是相应的三磷酸核苷 ATP、GTP、CTP和UTP。DNA中主要有四种类型脱氧核苷酸:dAMP、dGMP、dCMP和dTMP,合成前身物则是dATP、dGTP、dCTP和dUTP。② 三磷酸腺苷 (ATP)在细胞能量代谢上起着极其重要的作用。物质在氧化时产生的能量一部分贮存在ATP分子的高能磷酸键中。 ATP分子分解放能的反应可以与各种需要能量做功的生物学反应互相配合,发挥各种生理功能,如物质的合成代谢、肌肉的收缩、吸收及分泌、体温维持以及生物电活动等。因此可以认为 ATP是能量代谢转化的中心。③ ATP还可将高能磷酸键转移给UDP、CDP及GDP生成UTP 、CTP及GTP。它们在有些合成代谢中也是能量的直接来源。而且在某些合成反应中,有些核苷酸衍生物还是活化的中间代谢物。例如,UTP参与糖原合成作用以供给能量,并且 UDP还有携带转运葡萄糖的作用。④ 腺苷酸还是几种重要辅酶,如辅酶Ⅰ(烟酰胺腺嘌呤二核苷酸,(NAD+)、辅酶Ⅱ(磷酸烟酰胺腺嘌呤二核苷酸,NADP+)、黄素腺嘌呤二核苷酸(FAD)及辅酶A(CoA)的组成成分。NAD+及 FAD是生物氧化体系的重要组成成分,在传递氢原子或电子中有着重要作用。CoA作为有些酶的辅酶成分,参与糖有氧氧化及脂肪酸氧化作用。⑤ 环核苷酸对于许多基本的生物学过程有一定的调节作用(见第二信使)。

每一种生物dna中的碱基对的排列顺序是一定的吗?详细讲解!

不一定,真核生物体内的DNA上的基因包括外显子和内含子两部分,其中的内含子不表达,只是起一个连接作用,所以即使是同种生物相同的DNA,其内含子所包含的碱基顺序也可以不同你可以说同种生物其对应的DNA上的基因顺序是一定的。

高中生物 DNA分子中,有n个碱基对,则排列顺序有4的n次方种,对吗?

对。DNA分子是双链结构,且是半保留复制。n个碱基对,则每一条链上只能有n个碱基,而每一个碱基有四种可能,因此排列种类数就是n个4相乘,也就是4的n次方。

(生物)帮忙看一下

当然是不一样的,图1,2中的分别是TTGG和AACC,图2即使读另一边顺序也是反过来的,即GGTT。在DNA分子的每一条链中,磷酸基团那一边属于 5" 端,因为在一个脱氧核苷酸中,磷酸连接在脱氧核糖的第5号碳原子上;而—OH端是 3" 端,因为羟基连接在脱氧核糖的第3号碳原子上。表示一个核酸分子结构的方法由繁至简有许多种。由于核酸分子结构除了两端和碱基排列顺序不同外,其它的均相同。因此,在核酸分子结构的简式表示方法中,仅须注明一个核酸分子的哪一端是5′末端,哪一端是3′末端,末端有无磷酸基,以及核酸分子中的碱基顺序即可。如未特别注明5′和3′末端,一般约定,碱基序列的书写是由左向右书写,左侧是5′末端,右侧为3′末端。

每一种生物dna中的碱基对的排列顺序是一定的吗?详细讲解!

不一定,真核生物体内的DNA上的基因包括外显子和内含子两部分,其中的内含子不表达,只是起一个连接作用,所以即使是同种生物相同的DNA,其内含子所包含的碱基顺序也可以不同你可以说同种生物其对应的DNA上的基因顺序是一定的。

生物关于碱基的问题 求指教!

图1的碱基排列顺序是根据区段自下而上来看的:自左至右分为四列,然后自下而上读取,得到GGTTATGCGT。则图2的顺序就是:GATGCGTTCG

生物:决定氨基酸种类的是mRNA 还是tRNA上的碱基排列顺序?

决定氨基酸种类的是密码子`而密码子在mRNA上。tRNA上的碱基序列与mRNA上是互补关系...

【高中生物】关于碱基排列顺序的问题。

这是基因测序的原理,DNA四个碱基ACGT的分子的带电情况不同,利用电泳它们的速度不同分辨四个碱基。图1和图2,图1的序列说明,图一竖着四排分别是ACGT,然后横着由下往上就是DNA顺序,十个孔道,十个碱基

【高中生物】关于碱基排列顺序的问题

这是基因测序的原理,DNA四个碱基ACGT的分子的带电情况不同,利用电泳它们的速度不同分辨四个碱基。图1和图2,图1的序列说明,图一竖着四排分别是ACGT,然后横着由下往上就是DNA顺序,十个孔道,十个碱基

每一种生物dna中的碱基对的排列顺序是一定的吗?

不一定,真核生物体内的DNA上的基因包括外显子和内含子两部分,其中的内含子不表达,只是起一个连接作用,所以即使是同种生物相同的DNA,其内含子所包含的碱基顺序也可以不同 你可以说同种生物其对应的DNA上的基因顺序是一定的.

求人帮忙急急急)任何一种生物的DNA分子都具有特定的碱基排列顺序

DNA分子中四种碱基在数量有如下关系(书上的知识,不用解释了吧):A=T,C=G,所以所有DNA中都存在A/T=C/G=(A+G)/(T+C)=1故无法根据这些来决定DNA分子特异性选B

高中生物 DNA分子中,有n个碱基对,则排列顺序有4的n次方种,对吗?

对。DNA分子是双链结构,且是半保留复制。n个碱基对,则每一条链上只能有n个碱基,而每一个碱基有四种可能,因此排列种类数就是n个4相乘,也就是4的n次方。

为什么生物的核酸碱基会互补配对?

从物理化学的角度来说,核酸碱基会互补配对的根本原因是:碱基是个杂环芳香分子。碱基的芳香性保证了所有碱基杂环上的原子都是共平面的,而且同一条链上相邻的两个碱基之间会通过相互作用产生碱基堆积现象(也就是说所谓的碱基堆积力其实就是两层芳香环之间的电子云重叠),这就保证了核酸双链或多链结构中碱基能分层有序排列。而杂环上的高电负性的氮和氧原子,则保证了碱基能够提供足够的氢键供体和受体原子,使得同层碱基之间能形成两个或以上的氢键,这就使得同层的碱基能够配对。实际上碱基配对是相当多样的,中学里教的只有A-T C-G 顺式watson-crick配对,然而除了这种经典的配对形式以外,还有非常多样的非经典配对形式。具体可参考 @Leng Yeo 的这篇知乎专栏至于磷酸核糖骨架,那不是决定核酸能互补配对的关键。实际上,科学家们试过把磷酸核糖骨架修改得面目全非(如Peptide nucleic acid 、Threose nucleic acid、 假设有一种阿拉伯糖核酸,除了五碳糖是阿拉伯糖之外,一级结构和 RNA 的相同,对其高级结构有什么影响?),照样能碱基配对。RNA中的情况会复杂很多,所以这里先考虑DNA。DNA中的碱基"恰好"以AT/CG互补配对占主导地位而其他形式是自由能不偏好的,这看起来似乎非常“巧”。单纯讨论核酸配对自由能的ontology大概是没有意义的,因为这只能说明"生来就是那个样子"。下面从代谢和进化两方面简单加以考虑。

高一生物,碱基的互补配对原则是什么,适用于什么题目?

碱基互补配对原则 the principle of complementary base pairing 在DNA或某些双链RNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶),在RNA中与Uracil(U,尿嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。

高中生物哪些过程需要碱基互补配对原则

哪些过程需要遵循碱基互补配对原则:在人体细胞的线粒体,核糖体,细胞核内均可发生碱基互补配对行为。 在DNA或某些双链RNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶),在RNA中与Uracil(U,尿嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。微观领域———分子水平的复杂生理过程。基互补配对原则规律:规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,_位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。扩展资料:DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件。不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。参考资料来源:百度百科——DNA双螺旋结构

判断cdna 文库是生物所有dna 片段组成对还是错

脱氧核糖核酸又称去氧核糖核酸,是一种生物大分子,可组成遗传指令,引导生物发育与生命机能运作。主要功能是信息储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与核糖核酸所需。带有蛋白质编码的DNA片段称为基因。DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3",5"-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查伽夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。

生物的核酸碱基会互补配对,其原理是什么?

碱基的一对一配对,能保证遗传信息在传播过程中的稳定。DNA和RNA是遗传信息的载体,碱基就是密码,目前的原则可以让这个密码稳定地转运、复制和翻译。如果A同时对应T和C,那么一条核苷酸单链ATTG就会对应TAAC和CAAC两种,一个生物体内有多少碱基,就会产生多少的不唯一碱基对,而DNA的复制、转运、翻译是在不断发生的,这样造成的影响就是,DNA的内容在不断地不可控制地变化。不要说遗传到下一代,个体的存续都无法维持。那么,如果A对应A,T对应T,这样是否可以呢?这样也是一对一,但是……碱基配对需要碱基之间在一定条件下才会形成,同种物质之间产生这样配对的物理/化学变化……我觉得不太可能。至少在目前的ATCGU的体系下,我们知道这五个碱基都不会与自己配对。最后,我想说的是,这是一种有效的遗传信息载体,但这不代表这是唯一可行的。

生物中碱基互补配对是什么意思?

人的基因中的DNA,是一种双连结构,他是一种碱基互补的结构,高中生物种是一门重要的课程。碱基互补配对就是它的组合规律,A,T,C,G,就是四种脱氧核糖核苷酸,对应的是A-T,c-g,嘌呤,两种嘧滇

生物的碱基互补配对怎么学 有没有什么公式 口诀之类的啊

在高中生物中有关核酸中碱基含量的计算题是学生容易出现错误的,各类资料介绍的解题方法也很多,一题多解也屡见不鲜.要解决有关碱基含量计算的问题,关键在于对碱基互补配对原则的理解及运用.碱基互补配对原则对双链DNA分子中四种碱基的关系作了明确的阐述:嘌呤与嘧啶配对,且A=T,G=C,由此人们归纳出三条规律. 规律一:在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%.即:A+G=T+C或A+C=T+G. 规律二:在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值(A+G/T+C或T+C/A+G)与其互补链中相应的比值互为倒数. 规律三:在双链DNA分子中,一条链中的互补的碱基对和(如A+T或C+G)占全部碱基的比等于其任何一条单链中该种碱基比例的比值(也等于其转录形成的信使RNA中该种碱基比例的比值);一条链中的互补的碱基对的比值(A+T/G+C或G+C/A+T)与其在互补链中的比值和在整个分子中的比值相等. 我认为,遵循碱基互补配对原则及其引申的规律,特别是对于第三条规律,在解题中运用示意图分析法解答有关碱基含量计算的问题,直观明了,可以避免烦琐的推理和运算,迅速得到答案,得到事半功倍的效果. 至于有没有简单的记法~恐怕没有~理解加记忆就不会觉得难了!相信亲可以的哦~加油!

生物细胞分子的组成成分

水:生命活动的介质环境水是生物体的第一大化合物,含量在50%以上,甚至可达99%。人体的含水量随年龄增长而减少,从新生儿80%到老年的55%。地球表面的70%为水覆盖,水是地球表面最丰富的物质,水在地球表面以三种状态同时存在。液态水是良好的极性溶剂,很多物质都能溶于水中,众多的化学反应在水中能非常好的进行。生命现象主要是生物体内一系列生物化学反应的外部体现,因此,水是生命存在的介质环境,没有水就没有生命。水分子的形状是一个等腰三角形,分子内O-H间的键长约为0.0965nm,H-O-H键角为104.5°。氢原子的电子由于氧原子核的强力吸引而偏向氧,结果使氢被氧化而呈正电,氧呈负电。由于氧原子只有两对电子是与质子(氢原子核)共享的,在8电子壳层中还有两对电子暴露在O-H的外部,这两对电子吸引相邻水分子上的正电,从而形成氢键。因此,水分子通过氢键而相互连接起来。水与其他分子的负电性原子形成键能大致相同的氢键,例如羧基中的-OH基团中的氧或蛋白质-NH基团中的氮都可与水分子的氢形成氢键。在分子中如果含有-OH、-NH等极性基团的分子与电负性强的原子也能形成氢键。在蛋白质分子中,存在着大量的氢键,从而使蛋白质的结构得到加固。氢键在加固核酸的特殊结构中也起着重要的作用。此外,水还能够和一些小分子有机化合物形成氢键。氢键的键能大约只有共价键的十分之一,幅度较小的温度变化就可以使氢键断开。这就使得带氢键的结构具有显著的柔顺性,使它们能随着内外环境的变化而变化。生物体内物质的运输是依赖水良好的流动性完成的,另外水还有恒温、润滑等多种作用。无机盐:参与和调节新陈代谢无机盐在细胞里含量很小,人体内的无机盐大约占5%左右,种类很多,含量最多的无机盐是钙和磷盐约占无机盐含量的一半左右,主要沉积在骨骼和牙齿中,无机盐的另一半大多以水合离子状态存在于体液中。由于无机盐的种类多样,因此功能不一。总体来说,无机盐有如下功能:1.构成骨骼和牙齿的无机成分,对身体起支撑作用。骨骼中无机物约占1/3,有机物占2/3。存在于骨骼中的无机盐主要是钙和磷,有机物主要是蛋白质。有机物使骨骼具有韧性,无机盐使骨骼具有硬度。骨骼中的钙磷盐是体液中钙磷盐的贮存场所(钙磷库)。2.维持生命活动的正常生理环境。Na+、Cl-、K+、HPO42-在维持细胞内外液的容量方面起着重要的作用。体内各种酶的作用需要相对恒定的pH,体液的缓冲系统由这些盐类构成,发挥稳定氢离子浓度的功能。同样,无机盐对肌肉、心肌的应激性的维持也有重要的作用。3.参与或调节新陈代谢。体内很多酶需要离子结合才具有活性,有些离子可以增强或抑制酶的活性。某些离子参与物质转运、代谢反应、信息传递等多种功能。无机盐是机体新陈代谢的重要调节和参与因素。蛋白质:生命活动的主要表现者蛋白质是生物体的第二大化合物,在细胞的干重中,约一半以上是蛋白质,在活细胞中的含量在15%以上。蛋白质是大分子物质,分子量在6000至百万道尔顿。蛋白质的英文名叫做protein,源自希腊文προτο,它是“最原初的”,“第一重要的”意思。“朊”这个词就是根据protein的原意翻译的,但由于蛋白质一词沿用已久,所以“朊”并未被广泛采用。蛋白质在生物体内占有特殊的地位。蛋白质和核酸构成原生质中的主要成分,而原生质是生命现象的物质基础。蛋白质是生命的结构基础和功能基础。蛋白质广泛地存在于细胞膜、液态基质、细胞器、核膜、染色体等结构中,蛋白质中的一半左右是酶-生物催化剂,细胞中众多的化学反应由酶分子催化。蛋白质种类众多,功能各异,总体来说,蛋白质具有下述功能:1.催化和调控:体内物质代谢的一系列化学反应几乎都是由酶催化的。体内各组织细胞各种代谢的进行和协调,都与蛋白质的调控功能密切相关。2.在协调运动中的作用:肌肉收缩是一种协调运动,肌肉的主要成分是蛋白质,肌肉收缩是肌肉中多种蛋白质组装成的粗丝、细丝完成的,从微观上看是细胞内微丝、微管的活动,精子、纤毛的运动等都与蛋白质的作用有关。3.在运输及贮存中的作用:蛋白质在体内物质的运输和贮存中起重要作用。例如,全身各组织细胞时刻不能缺少的氧分子,就是由血红蛋白运输的;氧在肌肉中的贮存靠肌红蛋白来完成。铁在细胞内需与铁蛋白结合才能贮存。4.在识别、防御和神经传导中的作用:体内各种传递信息的信使需与特异的受体相互识别,受体多为蛋白质,可见蛋白质在信息传递过程中起重要作用,另外,抗体对抗原的结合,神经冲动的传递等也是蛋白质参与完成的。因此,蛋白质是生命过程中的主要分子,是生命现象的主要“演员”,蛋白质-生命的体现者。糖:生命活动的主要能源物质糖在动物体内是四大类生物分子中含量最小的,但糖类是草食动物及人体消化吸收最多的食物成分(不计水),原因在于吸收的糖类消耗很快(能源物质)、可大量转化为脂肪贮存及糖原贮存量较小造成的。糖是多羟基醛或多羟基酮类化合物。糖的基本单位是单糖,如葡萄糖、果糖等。多数单糖有链式和环式两种结构,并且环式结构存在α和β两种异构体,三者之间可以相互转化。由单糖可以聚合成双糖、寡糖、多糖。双糖如蔗糖(葡萄糖-果糖二聚体)、麦芽糖(葡萄糖二聚体)和乳糖(半乳糖二聚体),多糖的典型代表是植物中的淀粉和动物体的糖原。糖在植物体中贮存较多,在动物体相对含量较小。动物体不能由无机物合成糖,动物体内的糖最初都是由植物提供的,植物通过光合作用能将二氧化碳和水合成为糖。糖在体内有以下两方面的功能:1.细胞的重要能源物质:动物体摄取糖后,大量的糖是作为能源物质被使用。糖在体内氧化,释放能量,释放的能量以热散发维持体温和贮存于ATP、磷酸肌酸中以供生命活动所用。动物体摄取的糖如果有剩余,能够合成肝糖原和肌糖原以贮存糖,但量相对较小,一个中等身材的人只能贮存约500g左右的糖原。糖在身体内很容易转化为高度还原的能源贮存形式脂肪,贮存于脂肪组织,以供糖缺乏的时候给身体提供能量。2.糖在细胞内与蛋白质构成复合物,形成糖蛋白和蛋白聚糖,广泛地存在与细胞间液、生物膜和细胞内液中,它们有些作为结构成分出现,有些作为功能成分出现。因此,糖蛋白和蛋白聚糖也是生命现象的“演员”。核酸:生命活动的主宰者核酸在体内含量很少,分为两类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。DNA主要存在于细胞核中,RNA主要存在于细胞质中。RNA主要有信使核糖核酸(mRNA)、转运核糖核酸(tRNA)和核糖核蛋白体核糖核酸(rRNA)三种。核酸是重要的生物大分子,是生物化学与分子生物学研究的重要对象和领域。生物的特征是生物大分子决定的。生物大分子有四类:核酸、蛋白质、多糖和脂质复合物。糖和脂质的合成由酶(蛋白质)催化完成,它们与蛋白质在一起,增加了蛋白质结构与功能的多样性。蛋白质的合成取决于核酸;然而生物功能通过蛋白质来实现,包括核酸的合成也需要蛋白质的作用。因此,生物体内最重要的大分子物质是DNA、RNA和蛋白质。由生物大分子和有关生物分子与无机分子或离子共同构成生物机体不同层次的结构;生物大分子之间以及与其他分子之间的相互作用决定了一切生命活动。概括地说,核酸(主要是DNA)是生命的操纵者,蛋白质是生命的表现者,糖和脂肪是生命的能源物质,磷脂是生物膜的结构基础,水是生命存在的介质环境,无机盐参与和调节新陈代谢。G. Mendel于1865年发现豌豆杂交后代性状分离和自由组合的遗传规律。F. Miescher于1868年发现核酸(当时称核素),细胞学家和遗传学家曾猜测核素可能与遗传有关。19世纪开始知道有两类核酸,直到20世纪40年代才了解DNA和RNA都是细胞的重要组成物质,前者可引起遗传性状的变化,后者可能参与蛋白质的生物合成。50年代初生物学家开始接受DNA是遗传物质的观点。1953年,Watson和Crick提出DNA的双螺旋结构模型,才从分子结构上阐明了其遗传功能。半个世纪以来,核酸研究已经成为生物化学与分子生物学研究的核心和前沿,其研究成果改变了生命科学的面貌,也促进了生物技术产业的迅猛发展,充分表明这类物质有重要的生物功能。核酸的功能主要有以下三点:1.DNA是主要的遗传物质:DNA分布在细胞核内,是染色体的主要成分,而染色体是基因的载体。细胞内的DNA含量十分稳定,而且与染色体数目平行。基因是染色体上占有一定位置的遗传单位。基因有三个基本属性:一是可通过复制,将遗传信息由亲代传给子代;二是通过转录表达产生表型效应;三是可突变形成各种等位基因。但有些病毒的基因组是RNA,基因是RNA的一个片段。一些可作用于DNA的物理化学因素均可引起DNA突变从而引起遗传性状的改变。DNA的突变是生物进化的基础,即突变的累积导致生物进化。2.RNA参与蛋白质的生物合成:实验表明,由3类RNA共同控制着蛋白质的生物合成。核糖体是蛋白质合成的场所。过去以为蛋白质肽键的形成是由核糖体的蛋白质所催化,称转肽酶。1992年H. F. Noller等证明23S rRNA具有核酶活性,能够催化肽键形成。rRNA约占细胞总RNA的80%,它是装配者并起催化作用。tRNA占细胞总RNA的15%,它是转换器,携带氨基酸并起解译作用。mRNA占细胞总RNA的3~5%,它是信使,携带DNA的遗传信息并起蛋白质合成的模板作用。3.RNA功能的多样性:20世纪80年代RNA的研究揭示了RNA功能的多样性,它不仅是遗传信息由DNA传递到蛋白质的中间传递体,虽然这是它的核心功能,。归纳起来,RNA有5类功能:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③基因表达和细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工与进化。病毒RNA是上述功能RNA的游离成分。生物体通过DNA复制,而使遗传信息由亲代传给子代;通过RNA转录和翻译而使遗传信息在子代得到表达。RNA具备诸多功能,无不关系着生物机体的生长和发育,其核心作用是基因表达的信息加工和调节。脂类:生命的备用能源和生物膜的结构基础脂类是动物体内的第三大类物质。脂类大都是非极性物质,很难溶于水,脂类分为脂肪和类脂两大类。脂肪是由甘油和脂肪酸缩合而成,类脂有磷脂、胆固醇及胆固醇酯等形式。脂肪的含量不稳定,是体内贮存的能源物质,变化很大,称为可变脂或贮脂,一般成年男性脂肪占体重的10~20%。磷脂由于是细胞的结构成分,因此含量是稳定的,称固定脂或膜脂,约占体重的5%。1. 三脂酰甘油(脂肪)的丙三醇头部是亲水的,而3条脂肪酸尾部是疏水的。2. X基团是极性的,常见的有胆碱、乙醇胺、丝氨酸等。3. 磷脂和糖脂只有2条或1条疏水性尾部,其余都是亲水的,因此磷脂和糖脂很容易形成油与水的分界膜。脂类的主要作用有以下三点:1.脂肪是贮存的能源物质:脂肪是高度还原的能源物质,含氧很少,因此相同质量的脂肪和糖相比氧化释放的能量很多,可达糖的两倍以上,并且由于脂肪疏水,因此可以大量贮存,但脂肪作为能源物质的缺点也是明显的,因为疏水,所以脂肪的动员速度比亲水的糖要慢。脂肪主要的贮存部位是皮下、大网膜、肠系膜和脏器周围,贮存量可达15~20kg,足以维持一个人一个月的能量需要。2.磷脂是生物膜的结构基础:磷脂是脂肪的一条脂肪酸链被含磷酸基的短链取代的产物,因为这条磷酸基链的存在,使磷脂的亲水性比脂肪的大,能够自发形成磷脂双分子层膜。生物膜的骨架就是磷脂双分子层,再加上一系列的蛋白质和多糖就构成生物膜。生物膜在细胞中是广泛存在的,因此,一个细胞的膜表面积很大。膜分隔细胞的空间使不同类的化学反应可以在不同的区间完成而不互相干扰,很多化学反应在膜的表面上进行。神经元细胞由于树突轴突的存在,细胞膜面积十分巨大,因此神经组织是体内含磷脂最丰富的组织。3.胆固醇的衍生物是重要的生物活性物质:胆固醇可在肝脏转化为胆汁酸排入小肠,胆汁酸可以乳化脂类食物而加速脂类食物的消化;7-脱氢胆固醇可在皮肤中(日光照射下)转化为维生素D3,然后在肝脏和肾脏的作用下形成1,25-(OH)2-D3,通过促进肠道和肾脏对钙磷的吸收使骨骼牙齿得以生长发育;胆固醇可在肾上腺皮质转化为肾上腺皮质激素和性激素;胆固醇可在性腺转化为性激素。另外,不饱和脂肪酸也是体内其他一些激素或活性物质的代谢前体,胆固醇也作为生物膜的结构成分出现。脂类物质是贮存的能源物质、生物膜的结构成分和体内一些生理活性物质的代谢前体。DNA分子DNA即脱氧核糖核酸(英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA.DNA分子就是带有以上特征结构的分子。DNA结构的发现是科学史DNA结构的发现是科学史上最具传奇性的“章节”之一。发现DNA结构是划时代的成就,但发现它的方法是模型建构法,模型建构法就像小孩子拼图游戏一样的“拼凑”法。而在这场“拼凑”中表现最出色的是沃森和克里克。1928年4月6日,沃森出生于美国芝加哥。16岁就在芝加哥大学毕业,获得动物学学士学位,在生物学方面开始显露才华。22岁时取得博士学位,随后沃森来到英国剑桥大学的卡文迪什实验室,结识了早先已在这里工作的克里克,从此开始了两人传奇般的合作生涯。克里克于1916年6月8日生于英格兰的北安普敦,21岁在伦敦大学毕业。二战结束后,来到剑桥的卡文迪什实验室,克里克和沃森一样,对DNA有着浓厚的兴趣,从物理学转向研究生物学。当时人们已经知道,DNA是一种细长的高分子化合物,由一系列脱氧核苷酸链构成,脱氧核苷酸又是由脱氧核糖、磷酸和含氮碱基组成,碱基有4种。在1951年,很多科学家对DNA的结构研究展开了一场竞赛。当时有两个著名的DNA分子研究小组,一个是以著名的物理学家威尔金斯和化学家富兰克林为首的英国皇家学院研究小组,他们主要用X射线衍射来研究DNA结构。一个是以著名化学家鲍林为首的美国加州理工大学研究小组,他们主要用模型建构法研究DNA结构,并且已经用该方法发现蛋白质a螺旋。1951年2月,威尔金斯将富兰克林拍的一张非常精美的DNA的X光衍射照片在意大利举行的生物大分子结构会议上展示,一直对DNA有浓厚兴趣的沃森看到这张图时,激动得话也说不出来,他的心怦怦直跳,根据此图他断定DNA的结构是一个螺旋体。他打定主意要制作一个DNA模型。他把这种想法告诉了他的合作者克里克,得到了克里克的认可。沃森和克里克构建DNA分子结构模型的工作始于1951年秋。他们用模型构建法,仿照著名化学家鲍林构建蛋白质α螺旋模型的方法,根据结晶学的数据,用纸和铁丝搭配脱氧核苷酸。他们构建了一个又一个模型,都被否定了。但沃森坚持认为,DNA分子可能是一种双链结构。因为自然界中的事物,很多是成双成对的,细胞中的染色体也是成对的。之后他们分别完成了以脱氧核糖和磷酸交替排列为基本骨架,碱基排在外面的双螺旋结构(如图一),和以脱氧核糖和磷酸交替排列为基本骨架,碱基排在内部,且同型碱基配对的双螺旋结构(如图二)。1952年,生物化学家查伽夫访问剑桥大学时向报道了他对人、猪、牛、羊、细菌和酵母等不同生物DNA进行分析的结果。查伽夫的结果表明,虽然在不同生物的DNA之间,4种脱氧核苷酸的数量和相对比例很不相同,但无论哪种物质的DNA中,都有A=T和G=C,这被称为DNA化学组成的“查伽夫法则”。1952年7月,查伽夫访问卡文迪什实验室时,向克里克详细解释了A:T=G:C=1:1的法则。之后,克里克的朋友,理论化学家格里菲斯通过计算表明,DNA的4种脱氧核苷酸中,A必须与T成键,G必须与C成键。这与查伽夫法则完成一致。随后,鲍林以前的同事多诺告诉沃森,A-T和G-C配对是靠氢键维系的。以上这些工作,就成了沃森和克里克DNA分子模型中A—T配对、G—C配对结构的基础。至此,DNA模型已经浮现。2月28日,沃森用纸板做成4种碱基的模型,将纸板粘到骨架上朝向中心配对,克里克马上指出,只有两条单链的走向相反才能使碱基完善配对,这正好与X光衍射资料一致。完整的DNA分子结构模型完成于1953年3月7日。根据这个模型,DNA分子是一个双螺旋结构,每一个螺旋单位包含10对碱基,长度为34埃(1埃=10-10米)。螺旋直径为20埃。4月15日,沃森和克里克关于该模型的第一篇论文在《自然》(Nature)杂志上发表。DNA分子双螺旋结构模型的发现,是生物学史上的一座里程碑,它为DNA复制提供了构型上的解释,使人们对DNA作为基因的物质基础不再怀疑,并且奠定了分子遗传学的基础。DNA双螺旋模型在科学上的影响是深远的。

DNA是不是生物大分子

DNA是生物大分子。生物大分子是指生物体细胞内存在的蛋白质、核酸、多糖等大分子。每个生物大分子内有几千到几十万个原子,分子量从几万到几百万以上。生物大分子的结构很复杂,但其基本的结构单元并不复杂。蛋白质分子是由氨基酸分子以一定的顺序排列成的长链。氨基酸分子是大部分生命物质的组成材料,不同的氨基酸分子有好几十种。生物体内的绝大多数酶就属于蛋白质,是生物体维持正常代谢功能所不可缺少的。扩展资料:大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查伽夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。鉴定亲子关系用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞等都可以用于用亲子鉴定,十分方便。一个人有23对(46条)染色体,同一对染色体同一位置上的一对基因称为等位基因,一般一个来自父亲,一个来自母亲。如果检测到某个DNA位点的等位基因,一个与母亲相同,另一个就应与父亲相同,否则就存在疑问了。利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。DNA亲子鉴定,否定亲子关系的准确率几近100%,肯定亲子关系的准确率可达到99.99%。参考资料:百度百科——dna百度百科——生物大分子

简述DNA双螺旋结构模型的要点,并从结构特点分析它的生物学功能。

1)DNA分子是由两条长度相同,方向相反的多聚脱氧核苷酸链平行围绕同一中心轴形成的双排螺旋结构;两螺旋都是右手螺旋,双螺旋表面有深沟和浅沟。2)各脱氧核苷酸中磷酸和脱氧核糖基借磷酸二酯键相连形成的糖-磷酸骨架是螺旋的主链部分,幷位于螺旋外侧;各碱基则从骨架突出指向螺旋的内侧,碱基平面都垂直于螺旋的纵轴。3)两条多聚脱氧核苷酸链通过碱基间的氢链连接,一条链中的腺嘌呤必定与另一条链中的胸嘧啶配对(A-T);鸟嘌呤必定与胞嘧啶配对(G-C),这种碱基间的氢链连接配对原则称为碱基互补规则。DNA双螺旋结构:1952年,奥地利裔美国生物化学家查伽夫测定了DNA中4种碱基的含量,发现其中腺嘌呤与胸腺嘧啶的数量相等,鸟嘌呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺嘌呤与胸腺嘧啶配对、鸟嘌呤与胞嘧啶配对的概念。扩展资料:DNA分子双螺旋结构积塑模型是一种采用优质彩色塑料原料制造的生物遗传物质脱氧核糖核酸(DNA)分子的装配式结构模型。本模型利用具有特殊形状结构的红、黄、蓝、绿四种色球(分别代表A、T、G、C四种核苷)和棕棒(代表磷酸P)五种零件。不仅可装配成具有双螺旋空间结构的DNA分子链,而且还可以直观地表达出DNA分子链的自我复制功能。这套模型可用来做分子生物学的教具,也可做中小学生的课外科学模型玩具。主链:由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似“麻花状”绕一共同轴心以右手方向盘旋, 相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。DNA外侧是脱氧核糖和磷酸交替连接而成的骨架。所谓双螺旋就是针对二条主链的形状而言的。从立体化学的角度看,只有嘌呤与嘧啶间配对才能满足螺旋对于碱基对空间的要求,而这二种碱基对的几何大小又十分相近,具备了形成氢键的适宜键长和键角条件。每对碱基处于各自自身的平面上,但螺旋周期内的各碱基对平面的取向均不同。参考资料来源:百度百科——DNA双螺旋结构

DNA双螺旋结构的具有哪些生物学功能?为什么?

双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤总是与胸腺嘧啶配对、鸟膘呤总是与胞嘧啶配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。 它的成功测定,开创了现代生物学的新时代.具体的资料请到:http://baike.baidu.com/view/217753.htm

DNA是不是生物大分子

DNA是生物大分子。生物大分子是指生物体细胞内存在的蛋白质、核酸、多糖等大分子。每个生物大分子内有几千到几十万个原子,分子量从几万到几百万以上。生物大分子的结构很复杂,但其基本的结构单元并不复杂。蛋白质分子是由氨基酸分子以一定的顺序排列成的长链。氨基酸分子是大部分生命物质的组成材料,不同的氨基酸分子有好几十种。生物体内的绝大多数酶就属于蛋白质,是生物体维持正常代谢功能所不可缺少的。扩展资料:大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查伽夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。鉴定亲子关系用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞等都可以用于用亲子鉴定,十分方便。一个人有23对(46条)染色体,同一对染色体同一位置上的一对基因称为等位基因,一般一个来自父亲,一个来自母亲。如果检测到某个DNA位点的等位基因,一个与母亲相同,另一个就应与父亲相同,否则就存在疑问了。利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。DNA亲子鉴定,否定亲子关系的准确率几近100%,肯定亲子关系的准确率可达到99.99%。参考资料:百度百科——dna百度百科——生物大分子

生物,组成DNA的几种嘧啶怎么分有多少种啊...有点不董诶

组成DNA的嘧啶有两种,一种是胞嘧啶,另一种是胸腺嘧啶。也许你会问尿嘧啶呢,需要提醒的是尿嘧啶是RNA特有的成分。希望能帮到您,如有不懂还可以问。

嘌呤,嘧啶名词解释分子生物学

嘌呤的解释[purine] 由嘧啶环与咪唑环并合而成的晶体碱C 5 H 4 N 4 ,从尿酸制得,是从尿酸 衍生 的一些化合物的母体(如尿囊素和阿脲) 详细解释 [英purine] 有机 化合物,无色 结晶 ,易溶于水,在人体内氧化而变成尿酸。 词语分解 嘌的解释 嘌 ā 〔嘌呤〕有机化合物,无色结晶,在人体内气化而成尿酸。 疾速:“匪风飘兮,匪车嘌兮”。 部首 :口; 呤的解释 呤 í 〔呤呤〕小声细语。 〔嘌呤〕见“ 嘌”。 部首:口。

从分子结构方面解释为什么嘧啶被称为生物碱

嘧啶(c4h4n2,1,3-二氮杂苯)是一种杂环化合物.嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪.和吡啶一样,嘧啶保留了芳香性.形成dna和rna的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(cytosine),胸腺嘧啶(thymine),尿嘧啶(uracil)其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可.在碱基互补配对时,胸腺嘧啶或尿嘧啶(rna中)与腺嘌呤(dna中)以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合.一种碱性喊氮杂环有机化合物.其衍生物胞嘧啶,尿嘧啶,胸腺嘧啶等是核酸的重要组成成分.生物碱(alkaloid)是存在于自然界(主要为植物,但有的也存在于动物)中的一类含氮的碱性有机化合物,有似碱的性质,所以过去又称为赝碱.大多数有复杂的环状结构,氮素多包含在环内,有显著的生物活性

嘌呤和嘧啶为什么也叫生物碱

嘧啶(C4H4N2,1,3-二氮杂苯)是一种杂环化合物.嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪.和吡啶一样,嘧啶保留了芳香性.形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可.在碱基互补配对时,胸腺嘧啶或尿嘧啶(RNA中)与腺嘌呤(DNA中)以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合.一种碱性喊氮杂环有机化合物.其衍生物胞嘧啶,尿嘧啶,胸腺嘧啶等是核酸的重要组成成分.生物碱(alkaloid)是存在于自然界(主要为植物,但有的也存在于动物)中的一类含氮的碱性有机化合物,有似碱的性质,所以过去又称为赝碱.大多数有复杂的环状结构,氮素多包含在环内,有显著的生物活性

生物上的嘌呤和嘧啶各是什么东西?

嘧啶(,1,3-二氮杂苯)是一种杂环化合物。嘧啶由2个氮原子取代苯分子间位上的2个碳形成,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。 嘧啶与核酸 形成DNA和RNA的五种碱基中,有三种是嘧啶的衍生物:胞嘧啶(Cytosine),胸腺嘧啶(Thymine),尿嘧啶(Uracil)。 Image:Cytosine chemical structure.png|胞嘧啶 Image:Thymine chemical structure.png|胸腺嘧啶 Image:Uracil chemical structure.png|尿嘧啶 其中胸腺嘧啶只能出现在脱氧核糖核酸中,尿嘧啶只能出现在核糖核酸中,而胞嘧啶两者均可。在碱基互补配对时,胸腺嘧啶或尿嘧啶与腺嘌呤以2个氢键结合,胞嘧啶与鸟嘌呤以3个氢键结合。 杂环化合物 嘌呤与尿酸的代谢异常是痛风最重要的生物化学基础,是导致痛风的最根本的原因。嘌呤是生物体内的一种重要碱基其在人体内的分解代谢产物就是尿酸。 嘌呤在人体内主要以嘌呤核苷酸的形式存在。人体内的嘌呤碱基主要包括腺嘌呤、鸟嘌呤、次黄嘌呤、和黄嘌呤等,以腺嘌呤和鸟嘌呤为主,它们分别与磷酸核糖或磷酸脱氧核糖构成嘌呤核苷酸。嘌呤碱基是人体内的重要物质,其主要功能表现在以下几个方面: 1、核酸分子的组成部分、嘌呤最主要的生理功能是参与构成嘌呤核苷酸,而嘌呤核苷酸是核酸合成的原料之一,其与嘧啶核苷酸共同组成核酸分子的基本结构单位。 2、重要的能源物质 三磷酸腺苷(ATP)、二磷酸腺苷(ADP)都是细胞的主要能量形式,在各种生理活动中起重要作用。 3、重要的信使分子 环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)是重要的第二信使分子,在生长激素、胰岛素等多种细胞膜受体激素的作用发挥中起极其重要的中介作用。 4、作为某些活性基因的载体 S-腺苷蛋氨酸是蛋氨酸循环中的重要中间活性代谢物,是活性甲基的载体,在嘧啶核苷酸的合成中起重要作用。 5、参与组成某些辅酶 腺苷酸是多种重要辅酶的组成成分,比如辅酶A、辅酶I、辅酶II和黄素腺嘌呤辅酶等,而这些辅酶在机体的糖、脂肪及蛋白质等重要物质代谢中起重要作用。 人体内的嘌呤碱基主要是人体细胞自行合成,食物来源的嘌呤只占极小的比例。在人体内嘌呤的合成有两种途径,即从头合成途径和补救合成途径。从合成嘌呤的量来看,从头合成途径是主要途径。必须指出的是,人体内嘌呤的合成是以合成嘌呤核苷酸的方式进行的,而并非先合成单一的嘌呤碱基,再与磷酸核糖连接。嘌呤的分解代谢一般认为,核苷酸在体内的分解代谢过程类似食物中核苷酸的消化吸收过程,即细胞外的核苷酸首先在细胞表面脱去磷酸基,生成核苷通过特异的转运方式被细胞摄取进入细胞内,再进一步代谢。在人体,嘌呤核苷酸代谢的主要部位是肝脏、小肠和肾脏。 嘌呤核苷酸的分解代谢一般先在单核苷酸酶催化下水解生成嘌呤核苷(包括腺苷和鸟苷),其中腺苷继续在腺苷脱氨酶催化下生成次黄嘌呤核苷。次黄嘌呤核苷和鸟苷在嘌呤核苷磷酸酶的催化下,分别转化成次黄嘌呤和鸟嘌呤。鸟嘌呤在鸟嘌呤脱氨酶的催化下生成黄嘌呤,次黄嘌呤在黄嘌呤氧化酶催化下也转变成黄嘌呤。黄嘌呤在黄嘌呤氧化酶催化下进一步被氧化成尿酸,尿酸在尿酸酶催化下生成尿囊素,尿囊素在尿囊素酶催化下生成尿囊酸,尿囊酸在尿囊酸酶催化下生成尿素,尿素最后在尿毒酶催化下最终被彻底分解为二氧化碳和水。研究表明,核苷酸的分解代谢方式具有明显的多样性,不同生物体或者同一生物体的不同组织中,其分解代谢的具体途径可以不同。例如,AMP一般是水解生成腺苷再继续分解,但在肝脏则可以在腺苷脱氨酶催化下生成次黄嘌呤核苷酸后再分解。

生物学中的嘧啶和嘌呤的代码

DNA中 腺嘌呤A—胸腺嘧啶T 鸟嘌呤G—胞嘧啶CRNA中(不存在T) 腺嘌呤A—尿嘧啶U 鸟嘌呤G—胞嘧啶C
 首页 上一页  37 38 39 40 41 42